
and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 

motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 

Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 
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INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 
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and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 
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motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 

 

Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 

ABSTRACT
The phenomenon of age-related loss of muscle mass and 
strength was named sarcopenia in 1988 by Rosenberg. 
Since then, sarcopenia has evolved to include the loss of 
muscle function in the definition. Sarcopenia has a high 
prevalence in specific clinical conditions and in the older 
population and can lead to significant morbidity, poor 
recovery from adverse events and ultimately, 
institutionalisation. In spite of the severe health care 
burden posed, the diagnosis and treatment of sarcopenia 
have yet to become standard care. Emerging consensus on 
definition and diagnosis by the international work groups 
on sarcopenia with tailored population-based cut-offs and 
growing evidence-based management options will 
facilitate the meeting of these needs.

Keywords: Sarcopenia, Diagnosis, Aetiology, 
Consequences, Prevention, Management;

SFP2018; 44(5) : 11-17

INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 

T  H   E     S  I   N   G  A   P  O   R   E     F  A   M  I  L  Y    P  H  Y   S  I  C   I  A  N    V O  L  4 4(5)  O C T O B E R - D E C E M B E R  2 0 1 8  :  12

Figure 1: Recommended diagnostic algorithm of Asian Working 
Group for Sarcopenia

Table 1: Strategy of Sarcopenia Screening and Assessment for 
              Older People (60 or 65 Years of Age and Older) in Asia

Figure 2. Skeletal protein turnover



and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 
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motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 

Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 
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INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 
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and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 

motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 

Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 
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INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 
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and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 

motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 
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Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 
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INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 
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and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 

motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 

Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.

SARCOPENIA: CAUSES, CONSEQUENCES, PREVENTION AND TREATMENT
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 
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INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 
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and 5.4 kg/m2 for women using DEXA, and 7.0 kg/m2 in men 
and 5.7 kg/m2 in women using BIA.9

Taking into account the di�erent age cut-o� de�ning elderly 
population in Asia, AWGS recommends screening at age 60 or 
65 and older in community dwelling older people and older 
people with speci�c clinical conditions in all healthcare settings 
(Table 1).9

Causes 

Age-related changes in muscle properties

In muscles, motor units can be subdivided into three main 
groups; slow motor units, fast fatigable motor units and fast 
fatigue-resistant motor units. Slow motor units have the lowest 
number of muscle �bres and consist of Type I myosin which are 
rich in myoglobin and mitochondria, making them reddish in 
colour and able to provide adenosine triphosphate (ATP) via 
oxidative metabolism of triglycerides and carbohydrates over 
long periods of time for sustained aerobic activities.
  
In contrast, fast fatigable motor units have the highest number 
of muscle �bres and generate more force and contractile velocity 
than the slow motor units. �e individual muscle �bres also 
have the largest cross-sectional area (CSA) amongst the three 
groups. Fast fatigable motor units consist of Type IIx myosin, 
which contains smaller amount of mitochondria and hence 
generates its energy from the glycolysis of glycogen. �is 
pathway is able to provide large amount of energy over a short 
period of time and results in maximal power generation in the 

motor unit, required during activities like sprinting or weight 
lifting.

�e fast-fatigue resistant motor units lie in the middle between 
the two previous described motor unit types. �ey are made of 
Type IIa myosin and are intermediate in CSA between Type I 
and Type IIx muscle �bres.

Maximum power generation is 4 times greater in the 
fast-fatigable motor units compared with the slow Type I motor 
units due to the higher contractile velocity.10

Changes in muscle morphology

Between the ages of 40 and 70, there is an age-related loss of 
approximately 8% per decade of muscle mass. �is accelerates 
to about 15% per decade after 70 years of age.

Although both slow and fast motor units are loss, there is an 
accelerated loss of fast motor units with atrophy of type II fast 
�bres.11,12 �is loss is mediated via denervation of the fast motor 
units, resulting in the recruitment of the surviving denervated 
motor units by the slow motor units. Once recruited, they are 
then transformed into slow motor unit types, hence decreasing 
dramatically the power generating capability of the muscle.

Age related neurodegeneration occurs at all levels of the nervous 
system and there is a substantial decline in the number of alpha 
motor neurones in the spinal cord, particularly those supplying 
the fast motor units. Neuromuscular junctions are decreased in 
numbers but increase in the size of the terminal areas along with 
a reduction of the number of synaptic vesicles.13,14

In addition, there is an increase in lipid content in the ageing 
muscle. �is takes the form of increased number of adipocytes 
and direct deposition of lipids within the muscle �bres. 

Altered muscle protein metabolism 

Muscle protein metabolism is a dynamic process balancing 
synthesis from and breakdown of muscle proteins into amino 
acids. With ageing, there are reduced expression of hormonal 
factors which promote protein synthesis and increased 
expression of both endocrine and in�ammatory factors which 
promotes muscle degradation (Figure 2).15 
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Insulin-like growth factor 1 (IGF-1)

IGF-1 promotes protein synthesis in skeletal muscles via the 
binding and proliferation of skeletal muscle precursor cells.16 

IGF-1 is produced in the liver via the interaction with growth 
hormone (GH) and also locally within the skeletal muscles as a 
response to physical activity.17 �e actions of IGF-1 are 
anabolic, anticatabolic and antiapoptotic.18 With ageing, there 
is a decline in the level of GH and consequently, a decline in 
both liver and skeletal muscle produced IGF-1. 

Catabolic mediators

In cancer cachexia and autoimmune disorders, muscle protein 
degradation is accelerated and synthesis reduced.19,20 �e 
ubiquitin-proteasome pathway is responsible for protein 
degradation in skeletal muscle cells and involves a series of 
enzymatic steps leading ultimately to the ubiquitinised proteins 
transferred to a proteasome complex for degradation into short 
peptides and free intracellular amino acids 21 [Lang T, 
Osteoporosis, 2010;42]. �is pathway is promoted by 
in�ammatory cytokines such as tumour necrosis alpha (TNF-α) 
and interleukin-6 (IL-6), hormones such as cortisol and 
angiotensin, and reactive oxygen species. In ageing skeletal 
muscles, there are also increased expression of these mediators.22

Oxidative damage

Although the exact mechanisms are still unclear, the generation 
and accumulation of reactive oxygen species as part of the 
oxidative metabolism cycle in mitochondria leads to the damage 
of both structure and DNA of the mitochondria itself. �e 
frequency of these abnormal mitochondrial DNA regions is 
higher in muscles a�ected by sarcopenia.23,24,25 

Intrinsic skeletal changes

�e ability of the muscle to regenerate itself depends on the 
number and function of the intrinsic muscle satellite cells which 
are able to proliferate and di�erentiate into new skeletal muscle 
�bres. �ey are regulated by myogenic regulatory factors (MRF) 
which stimulates the proliferation and di�erentiation of the 
skeletal muscle satellite cells, while inhibitory muscle factors 
such as myostatin suppresses these activities by suppressing the 
expressions of the MRFs.26 Some studies have reported a 
reduction in the number of muscle satellite cells,27 while others 
have found wither no change or an increase with ageing.28

Changes in the muscle-tendon system

Human movement requires the transmission of the contractile 
forces generated by the muscles to the skeletal system via the 
connecting tendons. If tendons losses their sti�ness with age, 
there is a reduction in the rate of force generation from muscle 
contraction and vice versa. Initial human studies suggest that 
there is a 15% increase in compliance in older subjects 
compared with younger ones.29 Exercise training may be able to 
counteract this ageing e�ect by increasing tendon sti�ness.30

Consequences

Loss of muscle mass and muscle power

�e most important consequence of sarcopenia is the associated 
loss of skeletal contractile power, particularly in the lower limb 
which is essential for functional movements such as rising from 
a chair or climbing up stairs. Loss of lower limb power and 
strength is the largest risk factor for falls, injury and 
disability.31,32 Ability to regain balance after a trip or near fall 
would also be lost. Studies comparing normal young subjects in 
the 20 to 40 years age range and healthy older subjects in the 70 
to 80 years age range have shown a 20% to 40% decline in knee 
extensor torque and power.33-37 �ere is a similar decline of 
muscle strength in the upper limbs of 20% - 40% in measures 
such as handgrip strength and elbow extension torque between 
healthy younger and older subjects, with longitudinal declines 
ranging from 1% to 5% per annum.38

Studies of muscle CSA have found that CSA decrease by 
roughly 40% between 20 and 60 years old 39,40 and longitudinal 
studies of leg lean mass by DXA suggest that there is a roughly 
1% loss per annum.38

Clinical impact

Prospective cohort studies have shown the correlation between 
sarcopenia and adverse clinical outcomes in the older 
population, including falls, disability and fractures.31,32,41 

Measures of lower-body weakness de�ned as increased chair 
stand time and reduced knee extension strength have been 
correlated with odds ratios for any falls, injurious falls or 
recurrent falls, with highest correlation for recurrent falls with 
odds ratios ranging from 2.2 to 9.9.32 Upper body weakness is 
also correlated with falls risk, albeit at a lower magnitude.
 
Low thigh muscle CSA, low knee extensor power and torque are 
associated with increased risk of future inability to perform daily 
activities and limitation in functional mobility, de�ned as 
ability to climb 10 �ights of stairs or walk quarter of a mile.42 
�ere is also an association between low knee extension torque 
and increased risk of hip fracture of 50% to 60%, independent 
of bone mineral density.43

Prevention

Nutrition

Recent research has found that older adults need more dietary 
protein than younger peers to maintain good health, promote 
recovery from illness and maintain functionality, due in part to 
the increase anabolic resistance in the older population.44-49 

Evolving evidence supports the concept that lean body mass can 
be better maintained in older adults by consuming dietary 
protein at a higher level than the general recommended daily 
allowance (RDA).45-51 �e PROT-AGE Study Group have 
recommended a daily intake of 1.0 to 1.2 g protein per kg of 
body weight per day. For active older adults whom are also 
exercising, a higher protein intake of > 1.2 g per kg of body 

weight is recommended.52 

Protein ingestion together with exercise training increases the 
synthesis of skeletal muscle53-57, in both aerobic55,58 and 
resistance53,54,57 exercises. Net positive protein balance was 
achieved only when protein or amino acid intake was 
supplemented.59,60 High-leucine-containing and rapidly 
digested whey proteins had more e�ect on muscle protein 
synthesis than casein or soy proteins in isolation.53,54,57,61

An age-related decline in β-Hydroxy β-Methyl Butyrate 
(HMB), a metabolite of the amino acid leucine, has been found 
in humans. �ere is also a positive correlation between HMB 
concentrations with muscle mass and appendicular grip 
strength in adults.62 HMB supplementation during 10 days of 
bed rest have been shown to preserve muscle mass in healthy 
older adults63 and a meta-analysis of seven randomised 
controlled clinical trials of 287 subjects suggests that HMB 
supplementation can contribute to the preservation of muscle 
mass in older adults.64

In the post-hoc analysis of the PROVIDE study, a greater 
muscle gain was found in patients with a higher baseline serum 
25-hydroxyvitamin D (25(OH)D). Vitamin D acts 
synergistically with leucine and insulin to stimulate muscle 
protein synthesis. Older adults with de�cient baseline 
concentrations may need a higher dose of vitamin D or longer 
supplementation to achieve desirable serum 25(OH)D 
concentrations of 20 to 40 micrograms/L.65

Exercise

Maintenance of muscle mass and strength is critical for the 
preservation of physical activity and reducing the risks of falls 
and fractures in the older population. In addition, muscles exert 
powerful loads on the skeleton and leads to an adaptive increase 
in bone mass and strength, potentially further reducing the 
fracture risks.66 

A study of active older seniors from the University of Southern 
California longitudinal study on master athletes suggest that the 
�tness and functional reserves in these individuals are 
comparable to sedentary individuals 20 years their junior.67,68 
�ese gains need to be sustained by continuous exercise or they 
will be lost within a few years.

Resistive training can counteract age-related muscle loss by 
increasing both the number and the CSA of skeletal muscle 
�bres in both older men and women. �e bene�ts are seen after 
12 weeks of training, seem to be sustained even after cessation 
of the training period and extend to the frail population in 
nursing homes.69-73 �e resistive training exercises requires 
modest resources only, with sessions of 30 minutes twice a week 
using either exercise machines, body weight or elastic bands. 
Concurrent additional bene�ts are also seen in relation with 
osteoporosis, osteoarthritis, heart disease, diabetes and 
depression.

Treatment

Hormone replacement

Testosterone has an anabolic e�ect on muscle protein synthesis. 
Oestrogen, which can be converted to testosterone, will hence 
also impact on muscle strength. In addition, both sex hormones 
suppress in�ammatory cytokine production. However, trials of 
oestrogen and testosterone therapy in women have not led to 
signi�cant increases of muscle strength.74 In men, there are 
signi�cant improvement in lean body mass and muscle strength 
in young hypogonadal men treated with testosterone therapy, 
albeit still less than the improvements from resistive 
training.75-77 In older hypogonadal men treated with 
testosterone, there are some minimal change in body 
composition but no increase in muscle strength observed in 
studies which included control groups for comparison.74 

�e use of growth hormone as a potential anabolic agent for 
muscle synthesis has also been studied but most studies have 
found no improvements in both muscle mass and muscle 
strength in the elderly. Other approaches include the use of 
growth-hormone-releasing hormone which increases the level of 
GH and lead to moderate improvement in muscle strength.74-78 

�e use of IGF-I alone can lead to hypoglycaemia limiting the 
safe dose but this can be addressed by binding IGF-I to the 
binding protein IGFBP-3 and the use of this complex have been 
associated with increased grip strength in older women post hip 
fracture.79,80

Other agents under investigation include inhibitors of 
myostatin as myostatin counteracts the myogenic regulatory 
factors which promote the di�erentiation and proliferation of 
myocytes. Studies are also being done with selective androgen 
receptor modulators (SARMs) which can potentially selectively 
bind the androgen receptor in skeletal muscles and bones, and 
less stimulative e�ect on the prostate.

Conclusion

Sarcopenia is the result of a multifactorial process developing 
over a long period of time, leading to a loss of muscle mass, 
strength and function.

With the rise in ageing population globally, there is an urgent 
need to address the morbidity and loss of independence as a 
result of sarcopenia in order to add more functional and 
independence-�lled life to years and enable true ageing in place. 
Nutrition and exercise play key roles in moderating these 
age-related losses and at the same time help maintain mobility, 
function and independent living. Naturally and directly, this 
will reduce the morbidity and mortality associated with falls, 
factures and osteoporosis.

Emerging consensus on de�nition and diagnosis by the 
international work groups on sarcopenia with tailored 
population-based cut-o�s and growing evidence-based 
management options will facilitate urgent action, by clinicians 
and researchers alike, in meeting these needs.
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(IWGS) and Asian Working Group for Sarcopenia (AWGS), 
found an overall estimated prevalence of 10% for both women 
and men globally. �e review also found higher prevalence in 
non-Asian compared with Asian individuals (11% vs 10% in 
men, 13% vs 9% in women). �is was suggested as a result of 
the lower mean appendicular muscle mass in young Asians 
compared to non-Asians, a di�erence in dietary intake and level 
of physical activity. 3 

In ageing adults, the prevalence worldwide ranges from 1-29% 
in community settings, 14-33% in long-term care settings and 
10% in a single acute hospital population reported by the 
International Sarcopenia Initiative. In most studies, there was 
no di�erence with regards to gender.4 In individuals above 80 
years of age, the prevalence may reach 50% and is roughly 
twice as common as frailty in older adults.5

A cross-sectional study of 115 patients > 65-years-old attending 
outpatient specialist clinics in a tertiary referral hospital in 
Singapore using the screening tool SARC-F suggested that up 
to 44.3% were at risk of sarcopenia.6 Another 
community-based cohort study of 186 patients in Singapore 
using the EWGSOP cut-o�s for appendicular lean 
mass/height2 suggested that up to 53.8% may be sarcopenic.7 
An on-going study of 800 community dwelling patients > 
65-years-old in Singapore at risk of undernutrition with a 
MUST score of 1 and more will provide more information on 
the prevalence of sarcopenia in this cohort using the AWGS 
cut-o� values for handgrip strength, gait-speed and lean muscle 
mass measured by bioimpedence analysis.8

Definition

Using the consensual de�nitions by EWGSOP, IWGS and 
AWGS, sarcopenia is de�ned as the presence of low muscle 
mass (adjusted appendicular muscle mass for height) and 
muscle strength (handgrip strength) or physical performance 
(the usual gait speed).4

Diagnosis

For the Asian context, sarcopenia can be diagnosed based on the 
AWGS criteria (Figure 1). Individuals are �rst screened by 
measuring both handgrip strength and usual gait speed. �e 
cut-o�s are < 26 kg for men and < 18 kg for women for low 
handgrip strength, and < 0.8 m/s for 6-meter usual gait speed 
for both men and women.9 

If either are positive, the individual can then be further assessed 
for loss of lean muscle mass by dual energy X-ray 
absorptiometry (DEXA) or bioimpedence analysis (BIA). �e 
recommended cut-o�s are 2 standard deviations below the 
mean muscle mass of young reference group based on 
height-adjusted appendicular skeletal mass of 7.0 kg/m2 in men 
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prevalence in specific clinical conditions and in the older 
population and can lead to significant morbidity, poor 
recovery from adverse events and ultimately, 
institutionalisation. In spite of the severe health care 
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definition and diagnosis by the international work groups 
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growing evidence-based management options will 
facilitate the meeting of these needs.
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INTRODUCTION

�e phenomenon of age-related loss of muscle mass and 
strength was �rst reported by Critchley in 19311 Rosenberg 
�rst used the term sarcopenia to describe the loss of muscle in 
1989 2 and this term has since evolved to include the loss of 
muscle function in the de�nition. Sarcopenia has a high 
prevalence in speci�c clinical conditions and in the older 
population and can lead to signi�cant impairment of balance, 
mobility and ability to recover from acute illness, trauma and 
surgery with subsequent increased risks of recurrent falls, 
fractures, loss of functional independence and 
institutionalisation. Although the concepts involved in 
diagnosis and management of osteoporosis and sarcopenia are 
similar, the diagnosis and treatment of sarcopenia have yet to 
become standard care in the at-risk populations.  

Epidemiology

A systematic review and meta-analysis of general population 
studies of 58,404 individuals, based on the de�nitions of the 
European Working Group on Sarcopenia in Older People 
(EWGSOP), the International Working Group on Sarcopenia 
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Sarcopenia is an age-related syndrome associated with loss of muscle mass, strength, function and 
leads to increased morbidity and mortality in the presence of other insults and hospitalisation. 
The loss of strength and function, then predisposes to more physical immobility and reduced 
nutritional intake, further aggravating loss of muscle and function leading to a vicious cycle with 
falls, fractures, disability and institutionalisation as the final outcomes.
This vicious self-perpetuating cycle can be disrupted with screening of high risk groups, early 
diagnosis, identifying and treatment of reversible aggravating factors, high protein diet 
with/without evidence-based micronutrients which promote muscle protein synthesis, and 
targeted sustained physical exercises.
Although targeted resistance provides the best outcomes in terms of muscle strength, balance and 
functional capacity, significant benefits in terms of balance and functional capacity are obtained 
from sustained self-paced walking exercises and should be encouraged in the community setting.
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