

Inhalers and Beyond: Navigating Therapeutic Advances and Holistic Care in Asthma & COPD Management

Kay Choong SEE
Respiratory Physician and Intensivist
National University Hospital, Singapore

For Singapore Healthcare Professionals Only.

All images used in this material are for illustration purposes only.

Trademarks are property of their respective owners.

For reporting of adverse events, please write to sg.drugsafety@gsk.com.

GlaxoSmithKline Pte Ltd. 23 Rochester Park, Singapore 139234

PM-SG-FFV-PPTX-250009 | May 2025

Family Medicine Review Course 31 May 2025, 1600-1635 Ng Teng Fong Centre for Healthcare Innovation (CHI)

Disclosures

Grant support, honoraria, travel support

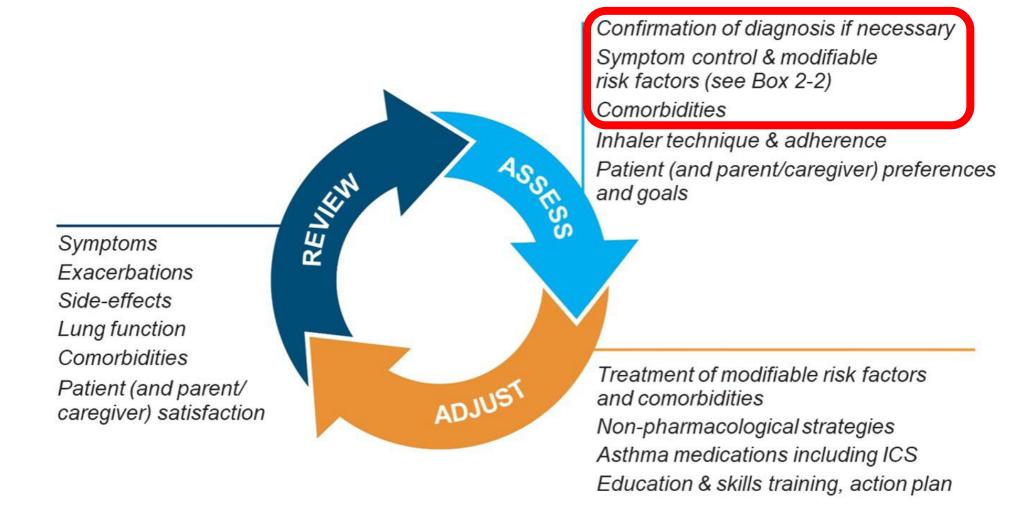
- Astra-Zeneca
- Bavarian Nordic
- Boehringer-Ingelheim
- Boston Scientific
- Fresenius
- Gambro
- GE Healthcare

- GSK
- Hospira
- Medtronic
- Moderna
- Novartis
- Pfizer
- Sanofi-Aventis

Key reference sources

Global Initiative for Asthma (GINA) Strategy Report 2024

Global Initiative for Chronic Obstructive Lung Disease (GOLD) Report 2025



60-year-old man

- Smoker
- Delivery driver
- Asthma since childhood
- Diagnosed with COPD 1 year ago (post-BD FEV1/FVC was 60%)
- On salmeterol-fluticasone propionate 50/250 1 puff BD for asthma
- Seeing his GP for routine follow-up
- Troubled by dyspnea and decreased exercise tolerance over the past 2 months
- How should his GP approach this case?

Asthma treatment is not 'set and forget', and not just medications

Not all that wheezes is asthma

Special considerations for asthma diagnoses	List of non-asthma diagnoses
 Allergic rhinitis, allergic conjunctivitis and atopic eczema Allergic bronchopulmonary aspergillosis 	 Benign or malignant masses, lymph nodes, or vascular rings causing central airway obstruction
 Eosinophilic granulomatosis with polyangiitis Exercise-induced asthma 	 Bronchiectasis Bronchitis or pneumonia Carcinoid syndrome
Work-related asthma	 Cardiac ischemia, valvular heart disease, or heart failure Chronic obstructive pulmonary disease
	 Eosinophilic pneumonia Foreign body inhalation Interstitial lung disease Paradoxical vocal cord motion Parasitic infection with pulmonary involvement Relapsing polychondritis Tracheal stenosis or tracheobronchomalacia Vocal cord mass or paralysis

Differential diagnosis of COPD

Differential Diagnosis of COPD

Figure 2.3

Diagnosis	Suggestive Features		
COPD	Symptoms slowly progressive		
	History of tobacco smoking or other risk factors		
Asthma	Variable airflow obstruction		
	Symptoms vary widely from day to day		
	Symptoms worse at night/early morning		
	Allergy, rhinitis, and/or eczema also present		
	Often occurs in children		
	Family history of asthma		
Congestive heart failure	Chest X-ray shows dilated heart, pulmonary edema		
	Pulmonary function tests indicate volume restriction, not airflow obstruction		
Bronchiectasis	Large volumes of purulent sputum		
	Commonly associated with bacterial infection		
	Chest X-ray/HRCT shows bronchial dilation		
Tuberculosis	Onset at all ages		
	Chest X-ray shows lung infiltrate		
	Microbiological confirmation		
	High local prevalence of tuberculosis		
Obliterative	Can occur in children		
bronchiolitis	Seen after lung or bone marrow transplantation		
	HRCT on expiration shows hypodense areas		
Diffuse panbronchiolitis	Predominantly seen in patients of Asian descent		
	Most patients are male and nonsmokers		
	Almost all have chronic sinusitis		
	Chest X-ray & HRCT show diffuse small centrilobular nodular opacities & hyperinflation		
	•		

These features tend to be characteristic of the respective diseases, but are not mandatory. For example, a person who has never smoked may develop COPD (especially in LMICs where other risk factors may be more important than cigarette smoking).

COPD with asthma features (not "eosinophilic COPD")

CLINICAL PHENOTYPE - ADULTS WITH CHRONIC RESPIRATORY SYMPTOMS (dyspnea, cough, chest tightness, wheeze)

HIGHLY LIKELY TO BE ASTHMA

if several of the following features TREAT AS ASTHMA

HISTORY

- · Symptoms vary over time and in intensity
 - Triggers may include laughter, exercise, allergens, seasonal
 - Onset before age 40 years
 - Symptoms improve spontaneously or with bronchodilators (minutes) or ICS (days to weeks)
- Current asthma diagnosis, or asthma diagnosis in childhood

LUNG FUNCTION

- Variable expiratory airflow limitation
- · Persistent airflow limitation may be present

FEATURES OF BOTH ASTHMA + COPD TREAT AS ASTHMA

HISTORY

- Symptoms intermittent or episodic
 - May have started before or after age 40
- May have a history of smoking and/or other toxic exposures, or history of low birth weight
- Any of asthma features at left (e.g. common triggers; symptoms improve spontaneously or with bronchodilators or ICS: current asthma diagnosis or asthma diagnosis in childhood)

LUNG FUNCTION

- Persistent expiratory airflow limitation
- With or without bronchodilator reversibility

LIKELY TO BE COPD

if several of the following features

TREAT AS COPD

HISTORY

- Dyspnea persistent (most days)
 - Onset after age 40 years
 - Limitation of physical activity
 - May have been preceded by cough/sputum
 - Bronchodilator provides only limited relief
- History of smoking and/or other toxic exposure. or history of low birth weight or respiratory illness such as tuberculosis
- No past or current diagnosis of asthma

LUNG FUNCTION

- Persistent expiratory airflow limitation
- With or without bronchodilator reversibility

INITIAL PHARMACOLOGICAL TREATMENT (as well as treating comorbidities and risk factors. See Box 3-5A)

- ICS-CONTAINING TREATMENT IS ESSENTIAL to reduce risk of severe exacerbations and death. See GINA report
 - As-needed low dose ICS-formoterol may be used as reliever. See GINA report
- DO NOT GIVE LABA and/or LAMA without ICS
- Avoid maintenance OCS

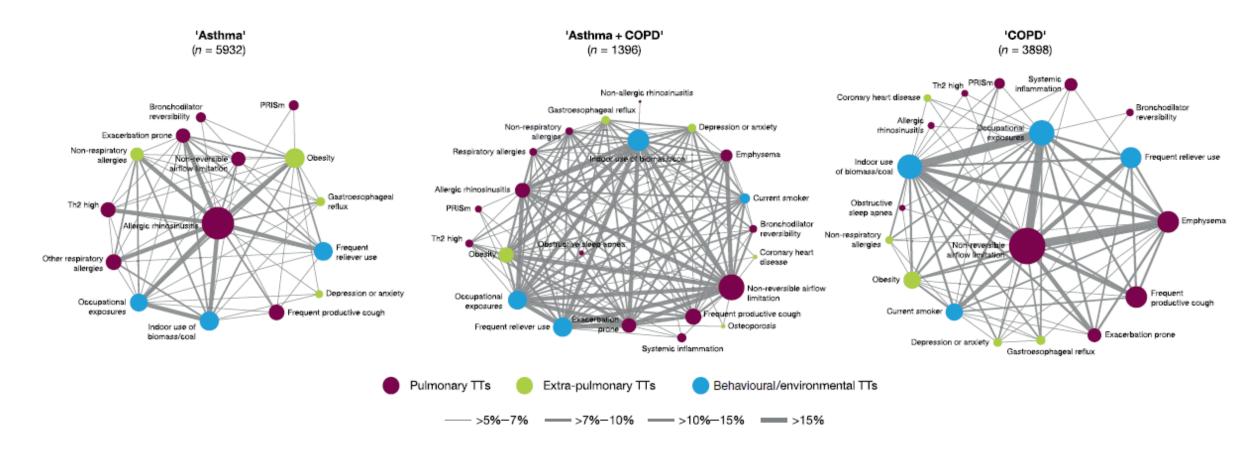
- ICS-CONTAINING TREATMENT IS ESSENTIAL to reduce risk of severe exacerbations and death. See GINA report
- Add-on LABA and/or LAMA usually also needed
- Additional COPD treatments as per GOLD
- DO NOT GIVE LABA and/or LAMA without ICS
- Avoid maintenance OCS

- TREAT AS COPD (see GOLD report)
 - Initially LAMA and/or LABA
 - Add ICS as per GOLD for patients with hospitalizations, ≥2 exacerbations/year requiring OCS, or blood eosinophils ≥300/ul
- Avoid high dose ICS, avoid maintenance OCS
- · Reliever containing ICS is not recommended

REVIEW PATIENT AFTER 2-3 MONTHS. REFER FOR EXPERT ADVICE IF DIAGNOSTIC UNCERTAINTY OR INADEQUATE RESPONSE

Causes of COPD

Classification Description **Genetically determined COPD** Alpha-1 antitrypsin deficiency (AATD) (COPD-G) Other genetic variants with smaller effects acting in combination **COPD** due to abnormal lung Early life events, including premature birth and low birthweight, among others development (COPD-D) **Environmental COPD Cigarette smoking COPD (COPD-C)** • Exposure to tobacco smoke, including in utero or via passive smoking Vaping or e-cigarette use Cannabis Biomass and pollution exposure Exposure to household pollution, ambient air pollution, COPD (COPD-P) wildfire smoke, occupational hazards **COPD** due to infections (COPD-I) Childhood infections, tuberculosis-associated COPD, HIVassociated COPD COPD & asthma (COPD-A) Particularly childhood asthma COPD of unknown cause (COPD-U)


Proposed Taxonomy (Etiotypes) for COPD

^{*}Adapted from Celli et al. (2022) and Stolz et al. (2022)

Asthma vs. COPD: Primary care implications

Relationship	Pharmacotherapy implications
Asthma OR COPD	Asthma needs ICS. COPD may not need ICS
COPD with asthma features	Treat as asthma and include ICS
Co-existing asthma AND COPD	Treat as asthma and include ICS

Treatable traits: NOVELTY study

Treatable traits for chronic lung diseases

Treatable Traits

Specific traits with specific trait markers

Targeted by specific therapies

Methods and Findings

58 studies from PubMed and Embase selected

Promising model in improving care in chronic respiratory diseases

Further trials should be conducted to evaluate clinical utility

5 Main Themes

Physiological Traits

Biochemical Traits

Microbiological Traits

Psychosocial Traits

Comorbidity Traits

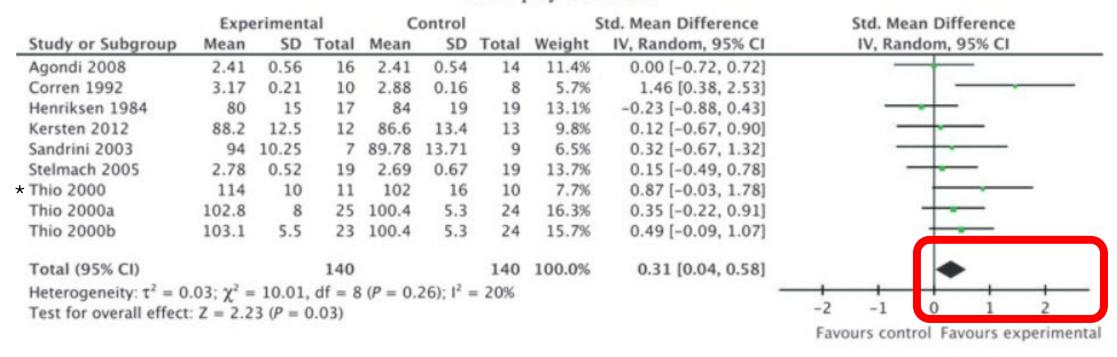
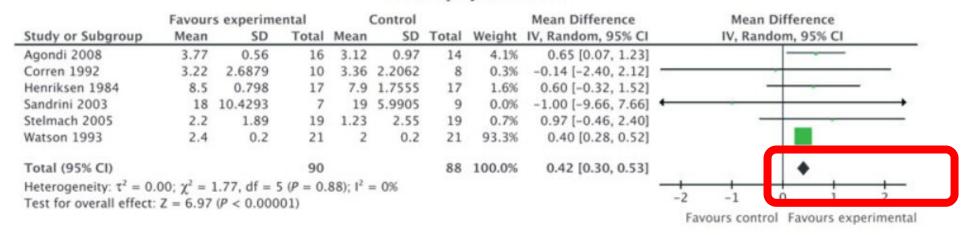
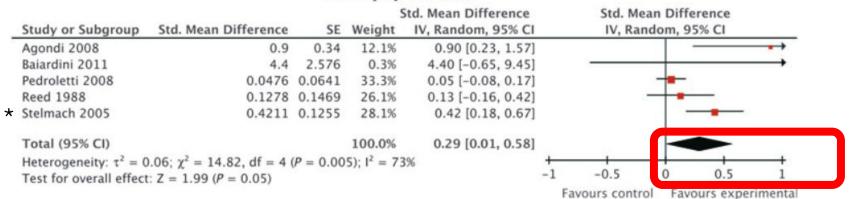

Allergic Rhinitis and Its Impact on Asthma

TABLE I. Classification of treatments used in patients with allergic rhinitis⁶

T1	Nonsedating H ₁ -antihistamine (oral, intranasal, and ocular), leukotriene receptor antagonists, or cromones (intranasal and ocular)
T2	INCSs
T3	INCSs + intranasal azelastine
T4	Oral corticosteroid as a short course and an add-on treatment
T5	Consider referral to a specialist and allergen immunotherapy

AR: Effect of INCS on FEV1


INCS spray vs Placebo


Lohia, Allergy 2013

AR: Effect of INCS on asthma symptoms and rescue medication use

INCS spray vs Placebo

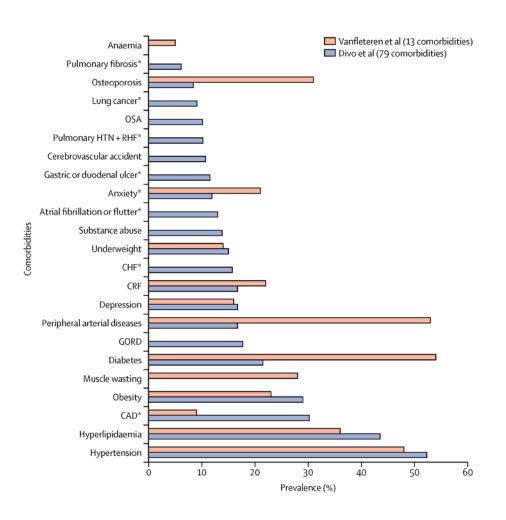
INCS spray vs Placebo

^{*}Data extracted from two parallel experimental arms: Stelmach 2005 (400 µ g BDP aqueous nasal spray with placebo MDI vs placebo nasal spray with placebo MDI); Stelmach 2005a (400 µ g BDP aqueous nasal spray with 1000 µ g BDP MDI).

AR vs. CRS: Treatment

TREATMENT	Allergic rhinitis (hay fever)	Chronic rhinosinusitis (CRS)
Reduce exposure to triggers, such as grass or dust	Yes	Yes
Steroid nasal spray	Yes	Yes
Saline (salt) nasal sprays or rinses	Yes	Yes
Antihistamines	Yes Nasal sprays work better than tablets	May not work
Combined steroid and antihistamine nasal sprays	Yes	Yes
Oral steroids	No	Sometimes (short course only)
Allergen immunotherapy (Desensitisation)	Often works	May not work
Monoclonal Antibodies	No	May work if there are nasal polyps
Antibiotics	No	Sometimes
Surgery	No	May be needed

COPD and CV disease


COPD

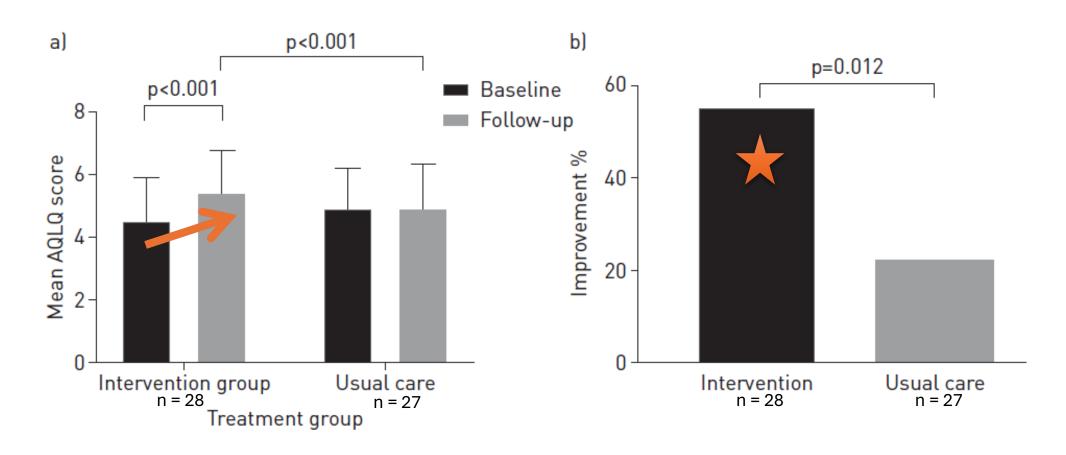
Systemic inflammation
Abnormal gas exchange
Lung hyperinflation
Reduced physical activity

CVD

Pulmonary edema
Pulmonary hypertension
Poor diaphragm perfusion

COPD and multimorbidity = "Syndemic"

Triggers for asthma and COPD


Variable	9	%		
	Asthma (n = 779)	COPD (n = 129)		
No. of trigger factors*	3 (2-4)	0 (0-1)	< 0.001	
≥ 1	93.8	42.6	< 0.001	
≥ 2	81.4	17.8	< 0.001	
≥ 3	60.9	11.6	< 0.001	
Trigger factor				
Dust	63.2	16.3	< 0.001	
Heavy rain (cold and wet weather)	32.5	17.1	< 0.001	
Upper respiratory tract infection	29.5	9.3	< 0.001	
Anxiety/anger/depression	23.1	7.0	< 0.001	
Heavy traffic fumes	20.2	0.8	< 0.001	
Citrus fruits	19.9	1.6	< 0.001	
Air-conditioning	19.1	3.1	< 0.001	
Tobacco smoke	15.7	2.3	< 0.001	
Hot weather	14.9	12.4	0.503	
Incense smoke	14.8	1.6	< 0.001	

Laughter	11.2	1.6	< 0.001
Household pets	10.0	0	< 0.001
Perfume	9.5	0.8	< 0.001
Flowers/pollen	6.3	0	0.001
Alcohol	5.1	0.8	0.021
Gastro-oesophageal reflux (i.e. heartburn)	5.1	0.8	0.021
Medication	3.3	0	0.04
Chemical exposure at work	3.2	2.3	0.786
Household pests [†]	2.1	0	0.148
Others [‡]	14.4	2.3	< 0.001

^{*}Data presented as median (interquartile range). †Includes cockroaches, flies and moth . ‡Includes bathing, fatigue, insufficient sleep, crowded places and overeating.

See, SMJ 2016

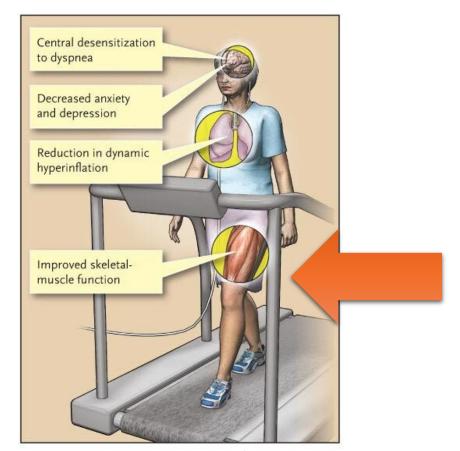
Treatable traits for asthma management

Treatable traits for COPD management

Smoking cessation: ACE Clinical Guidance

Smoking cessation: HPB's "I Quit Programme"

Vaccinations


Asthma (GINA 2024)

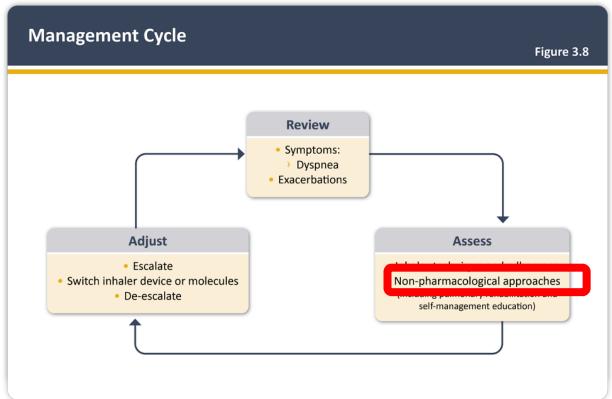
- Influenza
- COVID-19
- RSV (≥ 60 years old)
- KIV Pneumococcal
- KIV Pertussis (Tdap)

COPD (GOLD 2025)

- Influenza
- COVID-19
- RSV (≥ 60 years old)
- Pneumococcal
- Pertussis (Tdap) (if not done in adolescence)
- Zoster (>50 years old)


Walking in pulmonary rehabilitation

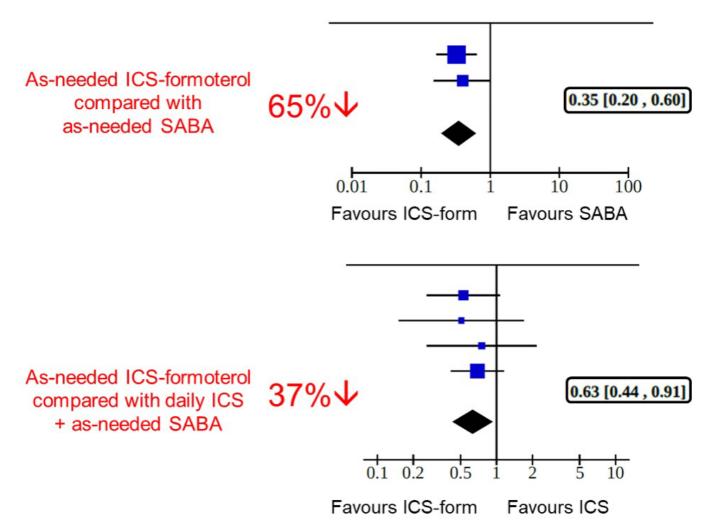
Casaburi, NEJM 2009


- Exercise training does not enhance lung function in COPD but significantly increases exercise tolerance, reduces dyspnea, and improves quality of life by reversing muscle deconditioning and boosting aerobic function in walking muscles.
- Training lowers ventilatory demand and respiratory rate during heavy exertion, reducing dynamic hyperinflation, easing breathing, and allowing more time for expiration. It also appears to centrally desensitize patients to dyspnea, though the mechanism is unclear.
- Greater exercise capacity leads to increased daily activity and a sense of mastery, contributing to reduced anxiety and depression.

Walking goals & self-management

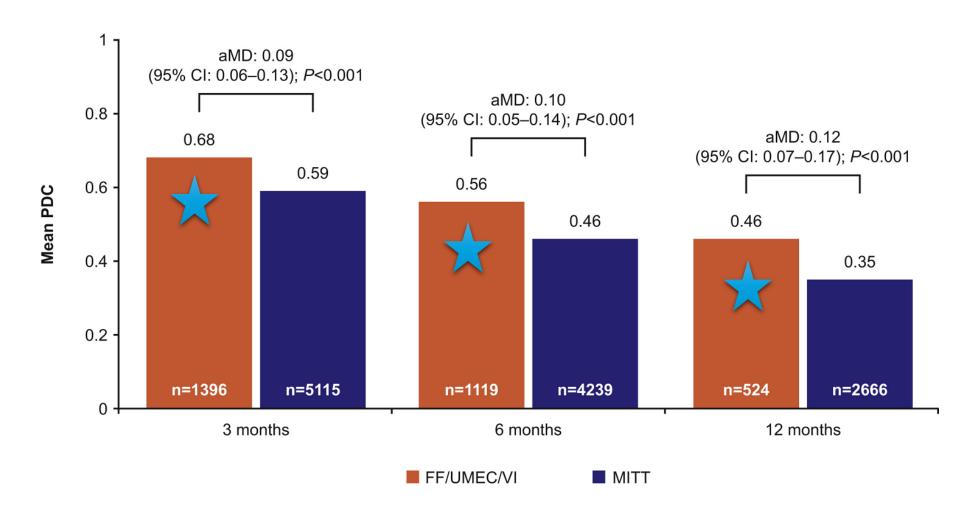
Asthma and COPD management cycles

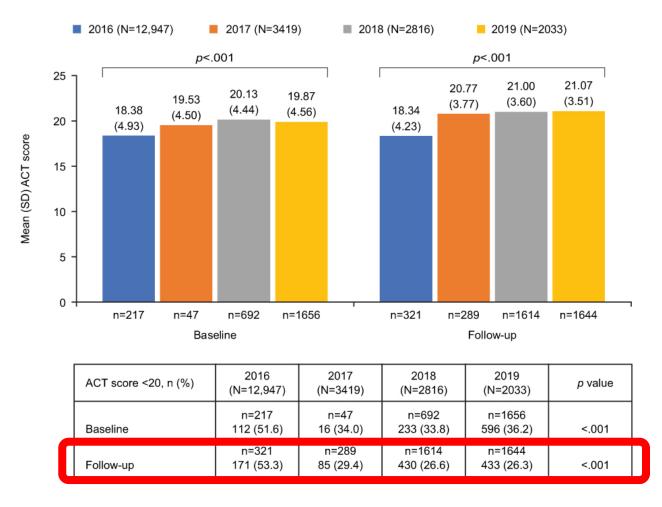
Types of nonadherence


Table 3 Matching adherence interventions to the type of nonadherence

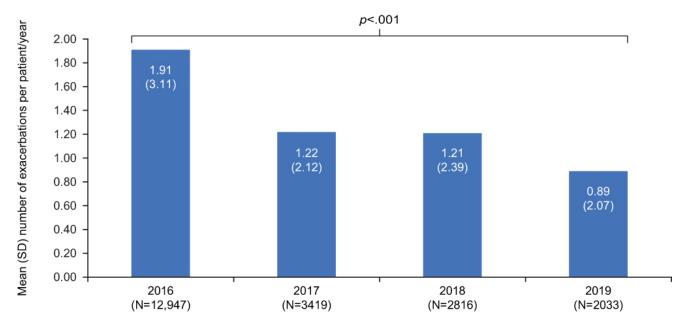
Type of nonadherence	Adherence interventions		
Erratic	Simplify and tailor regimen		
	Implement behavioral strategies such		
	as cueing (eg, storing medication		
	next to toothbrush), reminders and		
	reinforcement		
	Self-monitoring and support, with		
	monitoring from others		
Unwitting	Review of adherence behavior		
	Written or visual medication plans		
	Patient education in disease management		
Intelligent	Patient education and counseling		
	Negotiate therapy		
	Link therapy with personal goals		

As-needed-only ICS-formoterol reduces emergency visits and hospitalisations in patients with mild asthma

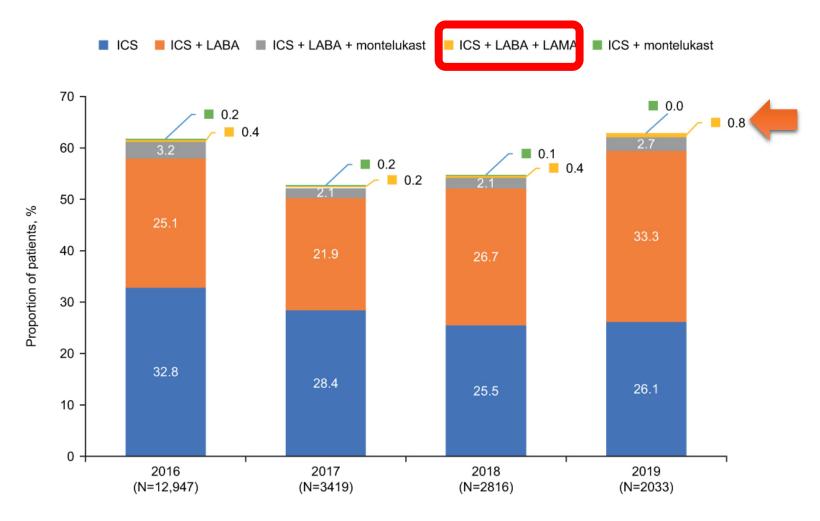




From Crossingham et al, Cochrane Database Syst Rev 2021 (n=9565)


Inhaler adherence: SITT vs. MITT

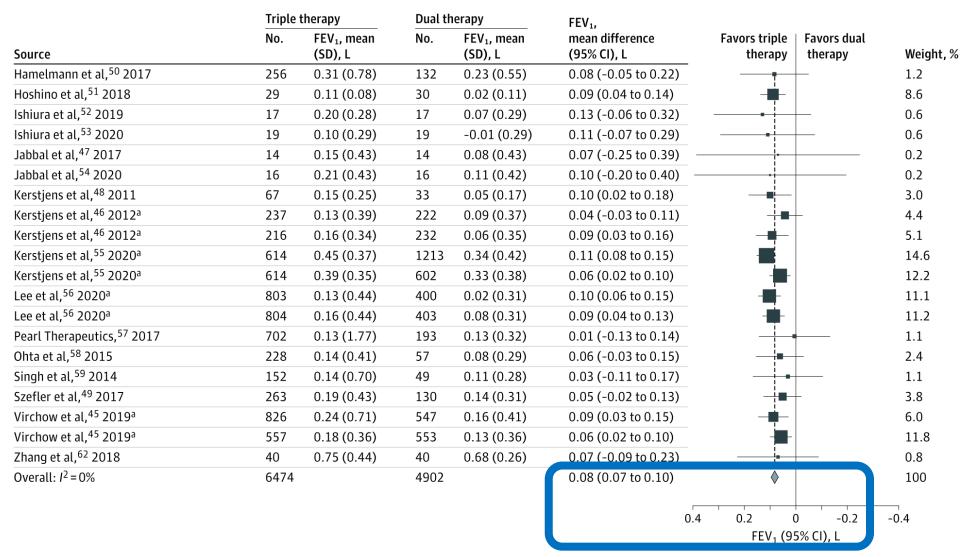
Outcomes for Singapore adults ≥18y


Outcomes for Singapore adults ≥18y

Number of exacerbations during the follow-up period

Exacerbations per year, n (%)	2016 (N=12,947)	2017 (N=3419)	2018 (N=2816)	2019 (N=2033)	
0	5994 (46.3)	1883 (55.1)	1724 (61.2)	1490 (73.3)	
1 2 >2	403 (3.1) 255 (2.0) 6295 (48.6)	122 (3.6) 99 (2.9) 1315 (38.5)	100 (3.6) 93 (3.3) 899 (31.9)	86 (4.3) 61 (3.0) 396 (19.5)	

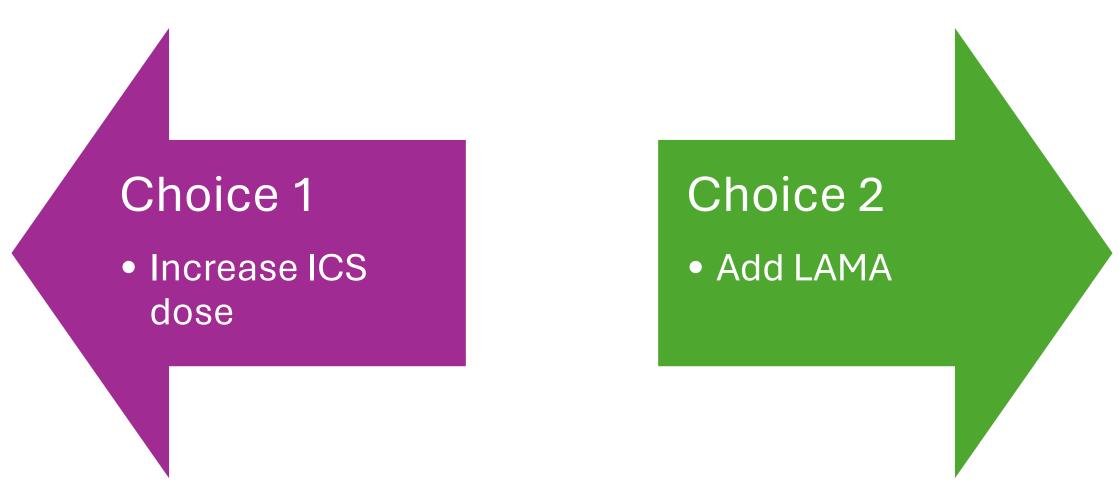
Inhaler prescription for Singapore adults ≥18y



LABA and LAMA for treating asthma

Mechanistic Action of ICS, LABA and LAMA

LAMA added to LABA-ICS ^lung function



LAMA added to LABA-ICS √exacerbations

A Incidence rate ratio of exacerbations

	Mean ann exacerbat		Incidence rate	Favors triple Favors dual	
Source	Triple	Dual	ratio (95% CI)	therapy therapy	Weight, %
Kerstjens et al, ⁴⁶ 2012	0.53	0.66	0.80 (0.66-0.96)	———	21
Kerstjens et al, ⁵⁵ 2020 ^b	0.26	0.33	0.78 (0.61-1.00)		12
Kerstjens et al, ⁵⁵ 2020 ^b	0.38	0.41	0.93 (0.74-1.17)		14
Lee et al, ⁵⁶ 2020 ^b	0.38	0.41	1.04 (0.82-1.31)	 	14
Lee et al, ⁵⁶ 2020 ^b	0.39	0.38	0.92 (0.69-1.23)		9
Pearl Therapeutics, ⁵⁷ 2017	0.44	0.55	0.79 (0.58-1.09)		8
Virchow et al, ⁴⁵ 2019	0.27	0.35	0.77 (0.64-0.93)	- 	22
Overall: 1 ² = 0%			0.85 (0.78-0.92)	♦	100
			_		
			0.5	1	2
				Incidence rate ratio (95% CI)	

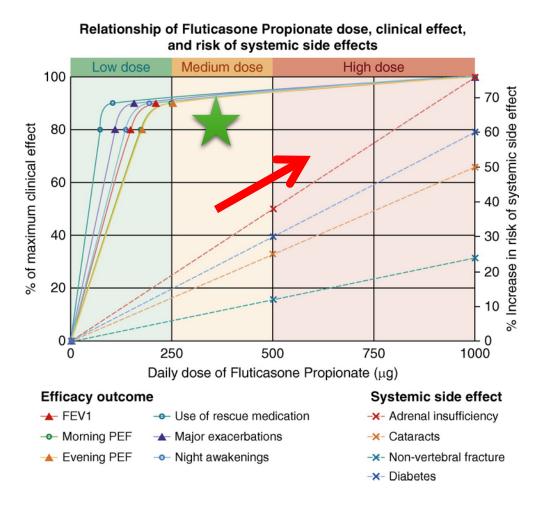
What can help guide clinicians in managing asthmatics who are uncontrolled on ICS-LABA?

Dose-response curve for ICS (FTC) in asthma

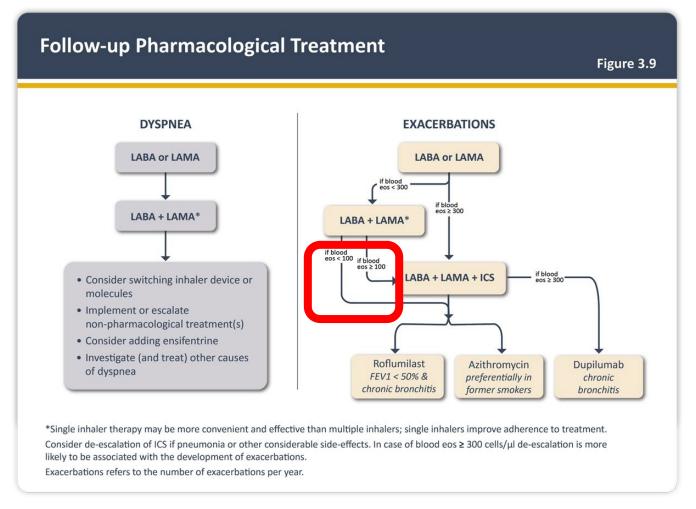
Table 2 Doses of fluticasone (µg/day) at which 80% and 90% of the maximum effect is achieved, as derived from a negative exponential model*

Outcome measure	80% of maximum effect achieved	90% of maximum effect achieved
FEV ₁	146	209
Morning PEF	172	247
Evening PEF	175	251
Use of rescue medication	71	102
Major exacerbations	108	155
Night awakenings	135	193

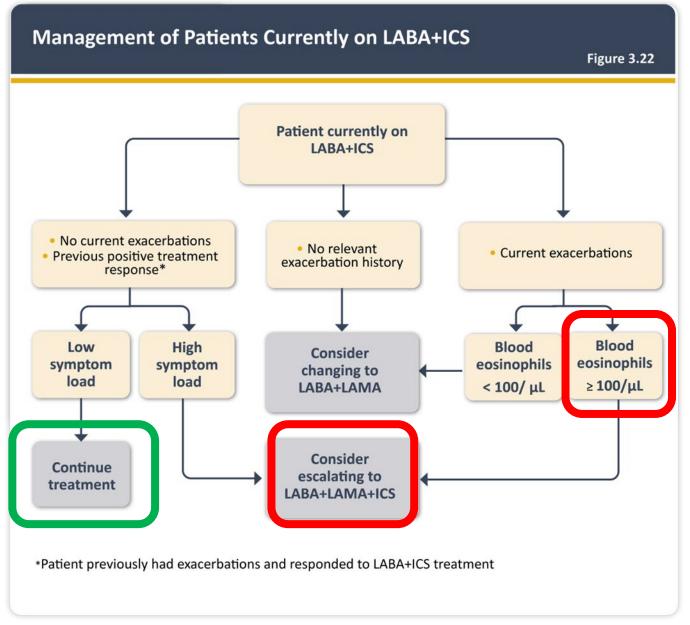
^{*}The effect obtained with 1000 μ g/day of fluticasone was considered to be the "maximum effect" for the purposes of this analysis.


Table 3 Estimates of dose of fluticasone (µg/day) giving peak effect and effect on mean change in outcome measure

		Fixed effects model		Random effects model	
Outcome measure	\mathbb{R}^2	Dose of peak effect	Mean change (95% CI)	Dose of peak effect	Mean change (95% CI)
FEV ₁ (I)	35%	568	0.62 (0.24 to 1.00)	628	0.70 (0.24 to 1.17)
Morning PEF (I/min)	48%	600	44 (19.5 to 68.5)	633	50 (14.5 to 86.1)
Evening PEF (I/min)	49%	590	52 (8.6 to 95.0)	657	51 (12.6 to 89.7)
β agonist use (puffs/day)	35%	560	-1.98 (-3.00 to -0.93)	574	-2.36 (-4.05 to -0.66)


FEV₁=forced expiratory volume in one second; PEF=peak expiratory flow.

FEV₁=forced expiratory volume in one second; PEF=peak expiratory flow.


Dose-related benefits/risks for ICS in asthma

COPD: Add ICS to LAMA-LABA if exacerbation+ & eos ≥100/µL

COPD: Add LAMA to LABA-ICS if exacerbation+ & eos ≥100/µL

Triple therapy reduces COPD mortality

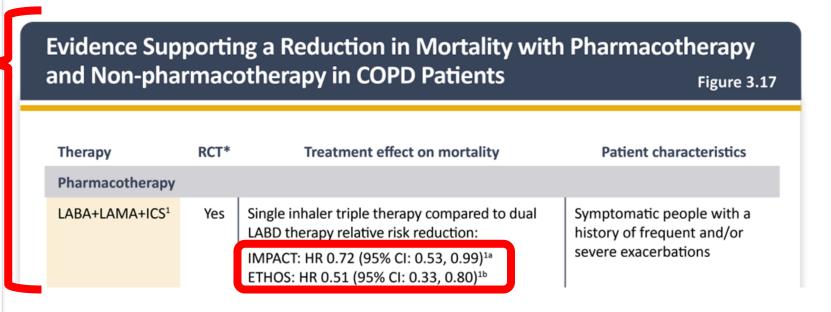
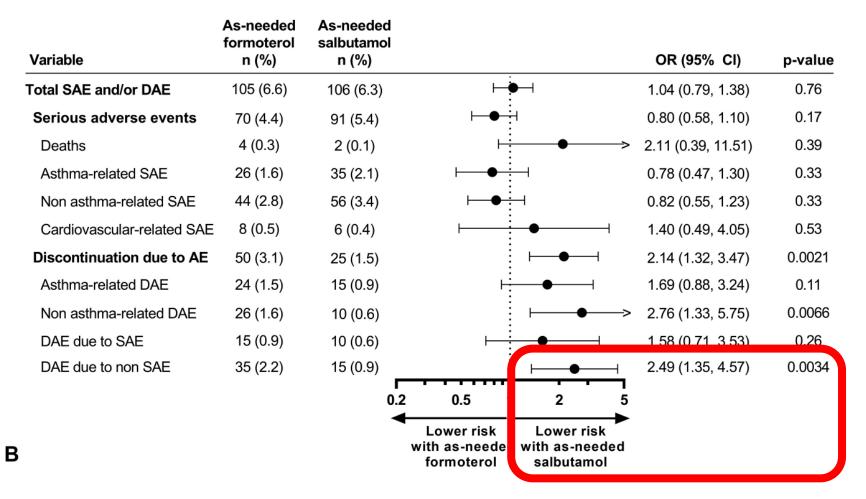

Evidence Supporting a Reduction in Mortality with Pharmacotherapy and Non-pharmacotherapy in COPD Patients

Figure 3.17

Therapy	RCT*	Treatment effect on mortality	Patient characteristics
Pharmacotherapy			
LABA+LAMA+ICS ¹	Yes	Single inhaler triple therapy compared to dual LABD therapy relative risk reduction: IMPACT: HR 0.72 (95% CI: 0.53, 0.99) ^{1a} ETHOS: HR 0.51 (95% CI: 0.33, 0.80) ^{1b}	Symptomatic people with a history of frequent and/or severe exacerbations
Non-pharmacologi	cal Thera	ру	
Smoking cessation ²	Yes	HR for usual care group compared to intervention group (smoking cessation) HR 1.18 (95% CI: 1.02, 1.37) ²	Asymptomatic or mildly symptomatic
Pulmonary rehabilitation³#	Yes	Old trials: RR 0.28 (95% CI 0.10, 0.84) ^{3a} New trials: RR 0.68 (95% CI 0.28, 1.67) ^{3b}	Hospitalized for exacerbations of COPD (during or ≤ 4 weeks after discharge)
Long-term oxygen therapy ⁴	Yes	NOTT: ≥ 19 hours of continuous oxygen vs ≤ 13 hours: 50% reduction ^{4a} MRC: ≥ 15 hours vs no oxygen: 50% reduction ^{4b}	PaO ₂ ≤ 55 mmHg or < 60 mmHg with <i>cor pulmonale</i> or secondary polycythemia
Noninvasive positive pressure ventilation ⁵	Yes	12% in NPPV (high IPAP level) and 33% in control HR 0.24 (95% CI 0.11, 0.49) ⁵	Stable COPD with marked hypercapnia
Lung volume reduction surgery ⁶	Yes	0.07 deaths/person-year (LVRS) vs 0.15 deaths/ person-year (UC) RR for death 0.47 (p = 0.005) ⁶	Upper lobe emphysema and low exercise capacity

^{*}RCT with pre-specified analysis of the mortality outcome (primary or secondary outcome); *Inconclusive results likely due to differences in pulmonary rehabilitation across a wide range of participants and settings.


ICS: inhaled corticosteroid; IPAP: inspiratory positive airway pressure; LABA: long-acting beta-agonist; LABD: long-acting bronchodilator; LAMA: long-acting anti-muscarinic; LYOT: long-term oxygen therapy; NPPV: noninvasive positive pressure ventilation; LVRS: lung volume reduction surgery; UC: usual treatment control group.

^{1.} a) IMPACT trial (Lipson et al. 2020) and b) ETHOS trials (Martinez et al. 2021); 2.Lung Health Study (Anthonisen et al. 2005); 3. a) Puhan et al. (2011) and b) Puhan et al. 2016; 4. a) NOTT (NOTT, 1980) and b) MRC (MRC, 1981); 5. Kohlein trial (Kohlein et al. 2014); 6. NETT trial (Fishman et al. 2004).

Reliever for non-formoterol maintenance therapy

Patients receiving maintenance ICS-salmeterol at study entry

Reliever for non-formoterol maintenance therapy

The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

Albuterol-Budesonide Fixed-Dose Combination Rescue Inhaler for Asthma

Papi A et al. DOI: 10.1056/NEJMoa2203163


CLINICAL PROBLEM

Patients typically treat acute asthma symptoms with short-acting β_2 -agonist (SABA) rescue therapy. However, SABAs do not treat inflammation, leaving patients at risk for severe exacerbations. Whether rescue therapy with a fixed-dose combination of a SABA (albuterol) plus a glucocorticoid (budesonide) can improve outcomes is unknown.

CLINICAL TRIAL

Design: A multinational, phase 3, double-blind, randomized trial evaluated the safety and efficacy of as-needed use of a fixed-dose combination of albuterol and budesonide, as compared with albuterol alone, in patients with uncontrolled moderate-to-severe asthma receiving inhaled glucocorticoid-containing maintenance therapy.

Intervention: Adults and adolescents were randomly assigned to receive, on an as-needed basis, 180 μ g of albuterol plus 160 μ g of budesonide, 180 μ g of albuterol plus 80 μ g of budesonide, or 180 μ g of albuterol; the treatments were delivered through a single metered-dose inhaler. Children 4 through 11 years of age were assigned only to the lower-dose combination group or the albuterol-alone group. Participants continued their baseline glucocorticoid-containing maintenance therapies. The primary efficacy end point was the first severe asthma exacerbation in a time-to-event analysis.

First Severe Asthma Exacerbation

Minimum Follow-up, 24 Wk 0.9 Higher-dose Lower-dose — Albuterol combination alone combination (N=1054) (N=1056) 0.8 (N=1013) Higher-dose combination vs. albuterol alone: HR, 0.74 (95% CI, 0.62-0.89); P=0.001 Lower-dose combination vs. albuterol alone: HR. 0.84 (95% CI. 0.71-1.00) 0.3 0.2 Weeks since Randomization

60-year-old man

- Smoker
- Delivery driver
- Asthma since childhood
- Diagnosed with COPD 1 year ago (post-BD FEV1/FVC was 60%)
- On salmeterol-fluticasone propionate 50/250 1 puff BD for asthma
- Seeing his GP for routine follow-up
- Troubled by dyspnea and decreased exercise tolerance over the past 2 months
- How should his GP approach this case?

Summary: Holistic care for asthma and COPD

Review non-inhaler-related issues

- Diagnosis
- Comorbidity (e.g., AR/CRS, IHD)
- Psychosocial treatable traits

 (including environmental and work-related triggers)
- Preventive healthcare: Smoking cessation, walking (e.g., 30min/day), vaccinations

Review inhaler-related issues

- Adherence/technique
- Uncontrolled asthma: Add LAMA to LABA-ICS if ICS dose is mid-high already
- Uncontrolled COPD: Add ICS to LAMA-LABA if baseline eosinophils ≥100/µL
- Consider combination inhalers

Succinct Safety Information

Relvar Ellipta

Contraindications: Severe milk-protein allergy, or hypersensitivity to the active substance(s) or any of the excipients. Warnings & Precautions: Not for acute asthma symptoms or acute exacerbation in COPD. Therapy should not be stopped without physician supervision. Paradoxical bronchospasm may occur. Caution advised in patients with severe cardiovascular disease, pulmonary tuberculosis, chronic or untreated infections, with moderate to severe hepatic impairment, diabetes mellitus, and for coadministration with strong CYP3A4 inhibitors. Systemic effects may occur at high doses. Consider risk factors for pneumonia before prescription, and re-evaluate treatment if pneumonia occurs. Avoid concurrent use of non-selective and selective beta-blockers. Adverse Reactions: Very common -Headache, nasopharyngitis; Common -pneumonia, upper respiratory tract infection, bronchitis, influenza, candidiasis of mouth and throat, oropharyngeal pain, sinusitis, pharyngitis, rhinitis, cough, dysphonia, abdominal pain; arthralgia, back pain, fractures, and pyrexia. Please refer to the full prescribing information for more details.

Full PI available on request. Version abbrev GDS12/IPI12 (SI)

Relvar Ellipta was developed in collaboration with INNOVIVA

Succinct Safety Information

Trelegy Ellipta

Contraindications: Hypersensitivity to the active substances or to any of the excipients (lactose monohydrate and magnesium stearate) or patients with severe milk-protein allergy. Warnings & Precautions: Asthma: Should not be used to treat acute asthma symptoms or an acute exacerbation in COPD for which a short-acting bronchodilator is required. COPD: Should not be used to treat an acute exacerbation in COPD for which a short-acting bronchodilator is required. Patients should not stop therapy with Trelegy Ellipta, in asthma or COPD, without physician supervision since symptoms may recur after discontinuation. Discontinue Trelegy if paradoxical bronchospasm occurs and institute alternative therapy if necessary. Cardiovascular effects, such as cardiac arrhythmias e.g. atrial fibrillation and tachycardia, may be seen after the administration of muscarinic receptor antagonists or sympathomimetics, use with caution in patients with unstable or life-threatening cardiovascular disease. Monitor patients with moderate to severe hepatic impairment for systemic corticosteroid-related adverse reactions and the 100/62.5/25 micrograms dose should be used. Systemic effects may occur, particularly at high doses for long periods, but much less likely than with oral corticosteroids. Possible systemic effects include HPA suppression, decrease in bone mineral density, cataract, glaucoma, central serous chorioretinopathy and more rarely, a range of psychological or behavioural effects including psychomotor hyperactivity, sleep disorders, anxiety, depression or aggression. Use with caution in patients with urinary retention, narrow angle glaucoma, pulmonary tuberculosis or with chronic or untreated infections. hyperglycaemia and severe hepatic impairment. Consider risk factors for pneumonia in patients with COPD before prescribing, and re-evaluate treatment if pneumonia occurs. Adverse Reactions: Very Common: Nasopharyngitis. Common: Urinary tract infection, sinusitis, pharyngitis, upper respiratory tract infection, headache, cough, oropharyngeal pain, dysphonia, constipation, pneumonia, bronchitis, rhinitis, influenza, candidiasis of mouth and throat, arthralgia, back pain, viral respiratory tract infection. Uncommon: dry mouth, dysgeusia, atrial fibrillation, supraventricular tachyarrhythmia, tachycardia, fractures.

Version number: GDS12/IPI13a (SI)

Trelegy 200 is not licensed for COPD in Singapore.

For Full Prescribing Information, scan QR codes.

Seretide Accuhaler:

Relvar Ellipta:

Trelegy Ellipta:

Flixotide Evohaler:

