The Emerging use of Novel Oral Anticoagulants: Essentials for the Family Physician

A/Prof. Lee Lai Heng Haematology Singapore General Hospital

Relevant Disclosures

Nil

Educational a	nd Travel Grants
---------------	------------------

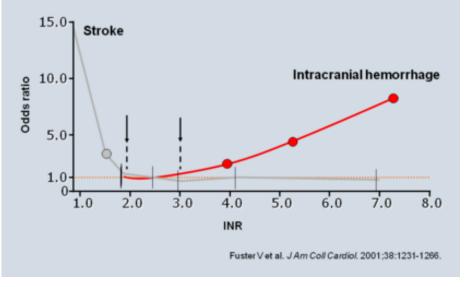
Bayer, Leo, Pfizer

Advisory Boards

Factor Xa and IIa Inhibitor Clinical Trials – Study Management Committee or Investigator:

Stocks and Shares

Bayer, BMS, Boehringer-Ingelheim, Pfizer, Leo, Covidien


VTE Prevention: apixaban (BMS), rivaroxaban (Pfizer)

VTE Therapy: apixaban (Pfizer), rivaroxaban (Bayer), edoxaban (Daiichi-Sankyo), dabigatran (Boeringher Ingelheim)

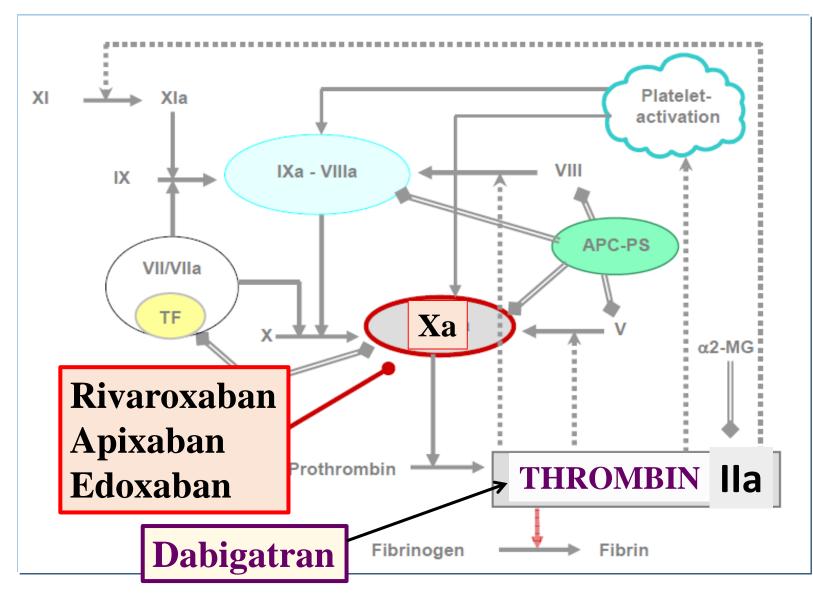
Oral Anticoagulation

Warfarin -Only approved drug for 60 years

Therapeutic Range for Warfarin INR Values and Stroke or Intracranial Hemorrhage

Narrow therapeutic window

Time to reach therapeutic range unpredictable


Numerous Factors affecting Maintenance Dosing of Warfarin

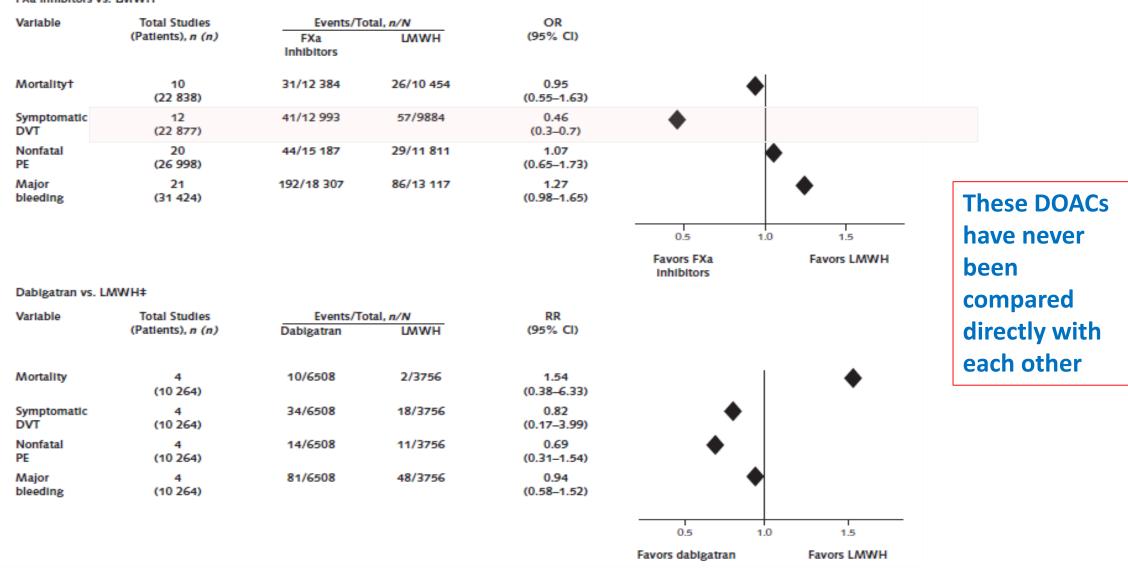
Needs close monitoring and dose adjustments

Ideal Anticoagulant

- Oral administration
- Good Efficacy and Safety
- Metabolic Properties with No food and drug interaction
- No need for coagulation monitoring
- Reversal Agent / Antidote available

Non Vitamin K antagonist Oral Anticoagulants

NOACs – New or Novel oral anticoagulants


DOACs – Direct oral anticoagulants

VTE prevention in orthorpaedic surgeries

Drug	Study	Enoxaparin	Efficacy (%)	Bleeding
Apixaban 2.5 mg bd	Advance 1, TKR	30 mg bd	9.0 vs. 8.9 Not non-Inferior	Less in Apixaban
Apixaban 2.5 mg bd	Advance 2, TKR	40 mg od	15 vs 24 P<0.0001	4 vs 5 P=0.09
Rivaroxaban 10 mg od	Records1 THR Record 2 THR Record 3 TKR	40 mg od	Pooled data 0.8 vs 1.6 p<0.001	Pooled data Records 1-4 0.4 vs 0.3 ns
Rivaroxaban 10 mg od	Record 4 TKR	30 mg bd	6.9 vs 10.1 p =0.012	10.5 vs 9.4 ns
Dabigatran 220 mg od	Re-model TKR	40 mg od	2.6 vs 3.5	10 vs 9
Dabigatran 220 mg od	Re-Mobilise TKR	30 mg bd	3.4 vs 2.5	5 vs 12
Dabigatran 220 mg od	Re-novate THR	40 mg od	3.1 vs 3.9	23 vs 18
Dabigatran 220 mg od	Pooled	40-60 mg od	3.0 vs 3.3	38 vs 39
Edoxaban 30 mg od	Stars J5 THR	20 mg od	2.4 vs 6.9 p<0.001	2.6 vs3.7%
Edoxaban 30 mg od	Stars E3 TKR	20 mg od	7.4 vs13.9 P<0.00	6.2 vs 3.7

NOACs vs standard prophylaxis in THR and TKR

Ann Intern Med. 2013;159:275-284 •

	RE-LY ^S			ROCKET-AF ⁶		ARISTOTLE	2	ENGAGE AF	F-TIMI 48°		Combined	
	Dabigatran 150 mg (n=6076)	Dabigatran 110 mg (n=6015)	Warfarin (n=6022)	Rivaroxaban (n=7131)	Warfarin (n=7133)	Apixaban (n=9120)	Warfarin (n=9081)	Edoxaban 60 mg (n=7035)	Edoxaban 30 mg (n=7034)	Warfarin (n=70 <u>3</u> 6)	NOAC (n=42 411)	Warfarin (n=29 272)
Age (years)	71.5 (8.8)	71-4 (8-6)	71.6 (8.6)	73 (65-78)	73 (65-78)	70 (63-76)	70 (63-76)	72 (64-68)	72 (64-78)	72 (64-78)	71-6	71.5
≥75 years	40%	38%	39%	43%	43%	31%	31%	41%	40%	40%	38%	38%
Women	37%	36%	37%	40%	40%	36%	35%	39%	39%	38%	38%	37%
Atrial fibrillation type												
Persistent or permanent	67%	68%	66%	81%	81%	85%	84%	75%	74%	75%	76%	77%
Paroxysmal	33%	32%	34%	18%	18%	15%	16%	25%	26%	25%	24%	22%
CHADS2*	2.2 (1.2)	2.1(1.1)	2-1 (1-1)	3.5 (0.94)	3.5 (0.95)	2.1 (1.1)	2-1 (1-1)	2.8 (0.97)	2-8 (0-97)	2.8 (0.98)	2.6 (1.0)	2.6 (1.0)
0–1	32%	33%	31%	0	0	34%	34%	<1%	<1%	<1%	17%	17%
2	35%	3								7%	35%	33%
3-6	33%	= 12	411	par	·tici	nan	te N	ΙΛΔ	Cc	3%	48%	50%
Previous stroke or TIA*	20%	2 - 2		par		pan				8%	29%	30%
Heart failure†	32%									8%	46%	47%
Diabetes	23%									6%	31%	31%
Hypertension	79%	7	~ — ~		•	•				94%	88%	88%
Prior myocardial infarction	17%	1 29	272	wa:	rfar	in				2%	15%	15%
Creatinine clearance‡					LIGH	***						
<50 mL/min	19%	19%	19%	21%	21%	17%	17%	20%	19%	19%	19%	19%
50-80 mL/min	48%	49%	49%	47%	48%	42%	42%	43%	44%	44%	45%	45%
>80 mL/min	32%	32%	32%	32%	31%	41%	41%	38%	38%	37%	36%	36%
Previous VKA use§	50%	50%	49%	62%	63%	57%	57%	59%	59%	59%	57%	57%
Aspirin at baseline	39%	40%	41%	36%	37%	31%	31%	29%	29%	30%	34%	34%
Median follow-up (years)¶	2.0	2.0	2.0	1.9	1.9	1.8	1.8	2.8	2.8	2-8	2-2	2.2
Individual median TTR	NA	NA	67 (54-78)	NA	58 (43-71)	NA	66 (52-77)	NA	NA	68 (57-77)	NA	65 (51-76)

Data are mean (SD), median (IQR), or percent, unless otherwise indicated. NOAC=new oral anticoagulant. CHADS,= stroke risk factor scoring system in which one point is given for history of congestive heart failure, hypertension, age \geq 75 years, and diabetes, and two points are given for history of stroke or transient ischaemic attack. TIA=transient ischaemic attack. VKA=vitamin K antagonist. TTR=time in therapeutic range. NA=not available. * ROCKET-AF and ARISTOTLE included patients with systemic embolism. †ROCKET-AF included patients with left ventricular ejection fraction <35%; ARISTOTLE included those with left ventricular ejection fraction <40%. ‡RE-LY <50 mL/min, \geq 00 mL/min, \geq

Lancet 2014;383:955-62

Table: Baseline characteristics of the intention-to-treat populations of the included trials

	RE-LY ^S			ROCKET-AF ⁶		ARISTOTLE	!	ENGAGE AF	-TIMI 48"		Combined	
	Dabigatran 150 mg (n=6076)	Dabigatran 110 mg (n=6015)	Warfarin (n=6022)	Rivaroxaban (n=7131)	Warfarin (n=7133)	Apixaban (n=9120)	Warfarin (n=9081)	Edoxaban 60 mg (n=7035)	Edoxaban 30 mg (n=7034)	Warfarin (n=7036)	NOAC (n=42 411)	Warfarin (n=29 272)
Age (years)	71-5 (8-8)	71-4(8-6)	7 1 ·6 (8·6)	73 (65-78)	73 (65-78)	70 (63-76)	70 (63-76)	72 (64-68)	72 (64-78)	72 (64-78)	71-6	71-5
≥75 years	40%	38%	39%	43%	43%	31%	31%	41%	40%	40%	38%	38%
Women	37%	36%	37%	40%	40%	36%	35%	39%	39%	38%	38%	37%
Atrial fibrillation type												
Persistent or permanent	67%	68%	66%	81%	81%	85%	84%	75%	74%	75%	76%	77%
Paroxysmal	33%	32%	34%	18%	18%	15%	16%	25%	26%	25%	24%	22%
CHADS2*	2-2 (1-2)	2(1(1)	2-1 (1-1)	3.5 (0.94)	3-5 (0-95)	2-1 (1-1)	2-1 (1-1)	2-8 (0-97)	2·8 (0·97)	2·8 (0·98)	2.6 (1.0)	2-6 (1-0)
0-1	32%	33%	31%	0	0	34%	34%	<1%	<1%	<1%	17%	17%
2	35%	35%	37%	13%	13%	36%	36%	46%	47%	47%	35%	33%
3-6	33%	33%	32%	87%	87%	30%	30%	54%	53%	53%	48%	50%
Previous stroke or TIA*	20%	20%	20%	55%	55%	19%	18%	28%	29%	28%	29%	30%
Heart failure†	32%	32%	32%	63%	62%	36%	35%	58%	57%	58%	46%	47%
Diabetes	23%	23%	23%	40%	40%	25%	25%	36%	36%	36%	31%	31%
Hypertension	79%	79%	79%	90%	91%	87%	88%	94%	94%	94%	88%	88%
Prior myocardial infarction	17%	17%	16%	17%	18%	15%	14%	11%	12%	12%	15%	15%

Lancet 2014;383:955-62

NOACs for prevention in stroke and arterial emboli in AF

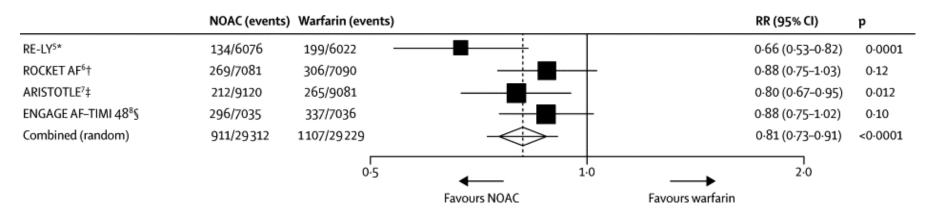


Figure 1. Stroke or systemic embolic eventsData are n/N, unless otherwise indicated. Heterogeneity: I2=47%; p=0·13. NOAC=new oral anticoagulant. RR=risk ratio. *Dabigatran 150 mg twice daily. †Rivaroxaban 20 mg once daily. ‡Apixaban 5 mg twice daily. §Edoxaban...

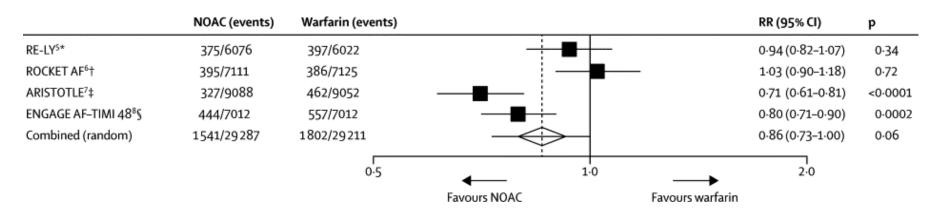
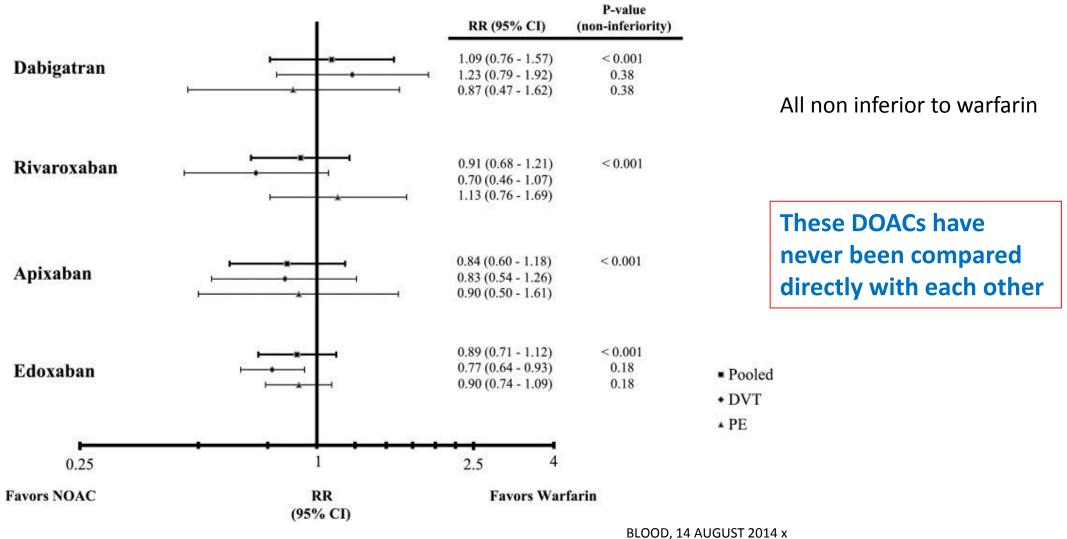


Figure 3. Major bleedingData are n/N, unless otherwise indicated. Heterogeneity: I2=83%; p=0.001. NOAC=new oral anticoagulant. RR=risk ratio. *Dabigatran 150 mg twice daily. †Rivaroxaban 20 mg once daily. ‡Apixaban 5 mg twice daily. §Edoxaban 60 mg once daily.

These DOACs have never been compared directly with each other

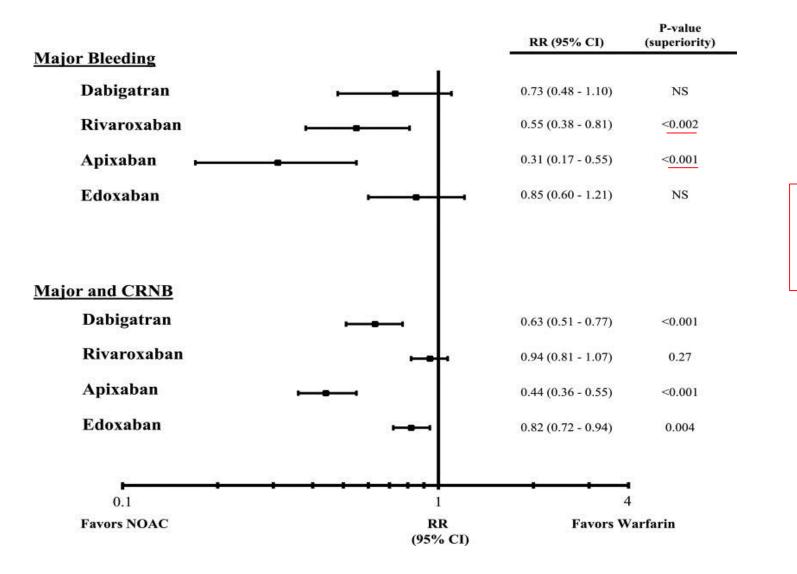
Overview of phase III clinical trials NOACs vs VKAs in VTE 27,044 patients

Drug	Trial	Design	Treatments and dosage	Duration	Patients	Efficacy outcome (results)	Safety outcome (results)
Dabigatran	RE-COVER ²⁹³	Double-blind, double-dummy	Enoxaparin/dabigatran (150 mg b.i.d.)ª vs. enoxaparin/warfarin	6 months	2539 patients with acute VTE	Recurrent VTE or fatal PE: 2.4% under dabigatran vs. 2.1% under warfarin	Major bleeding: 1.6% under dabigatran vs. 1.9% under warfarin
	RE-COVER II ²⁹⁴	Double-blind, double-dummy	Enoxaparin/dabigatran (150 mg b.i.d.)ª vs. enoxaparin/warfarin	6 months	2589 patients with acute VTE	Recurrent VTE or fatal PE: 2.3% under dabigatran vs. 2.2% under warfarin	Major bleeding: 15 patients under dabigatran vs. 22 patients under warfarin
Rivaroxaban	EINSTEIN- DVT ²⁹⁵	Open-label	Rivaroxaban (15 mg b.i.d. for 3 weeks, then 20 mg o.d.) vs. enoxaparin/warfarin	3, 6, or 12 months	3449 patients with acute DVT	Recurrent VTE or fatal PE: 2.1% under rivaroxaban vs. 3.0% under warfarin	Major or CRNM bleeding 8.1% under rivaroxaban vs. 8.1% under warfarin
	EINSTEIN-PE ²⁹⁶	Open-label	Rivaroxaban (15 mg b.i.d. for 3 weeks, then 20 mg o.d.) vs. enoxaparin/warfarin	3, 6, or 12 months	4832 patients with acute PE	Recurrent VTE or fatal PE: 2.1% under rivaroxaban vs. 1.8% under warfarin	Major or CRNM bleeding: 10.3% under rivaroxaban vs. 11.4% under warfarin
Apixaban	AMPLIFY ²⁹⁷	Double-blind, double-dummy	Apixaban (10 mg b.i.d. for 7 days, then 5 mg b.i.d.) vs. enoxaparin/warfarin	6 months	5395 patients with acute DVT and/or PE	Recurrent VTE or fatal PE: 2.3% under apixaban vs. 2.7% under warfarin	Major bleeding: 0.6% under apixaban vs. 1.8% under warfarin
Edoxaban	Hokusai-VTE ²⁹⁸	Double-blind, double-dummy	LMWH/edoxaban (60 mg o.d.; 30 mg o.d. if creatinine clearance 30–50 ml/min or body weight <60 kg) vs. UFH or LMWH/warfarin	Variable, 3–12 months	8240 patients with acute DVT and/or PE	Recurrent VTE or fatal PE: 3.2% under edoxaban vs. 3.5% under warfarin	Major or CRNM bleeding: 8.5% under edoxaban vs. 10.3% under warfarin

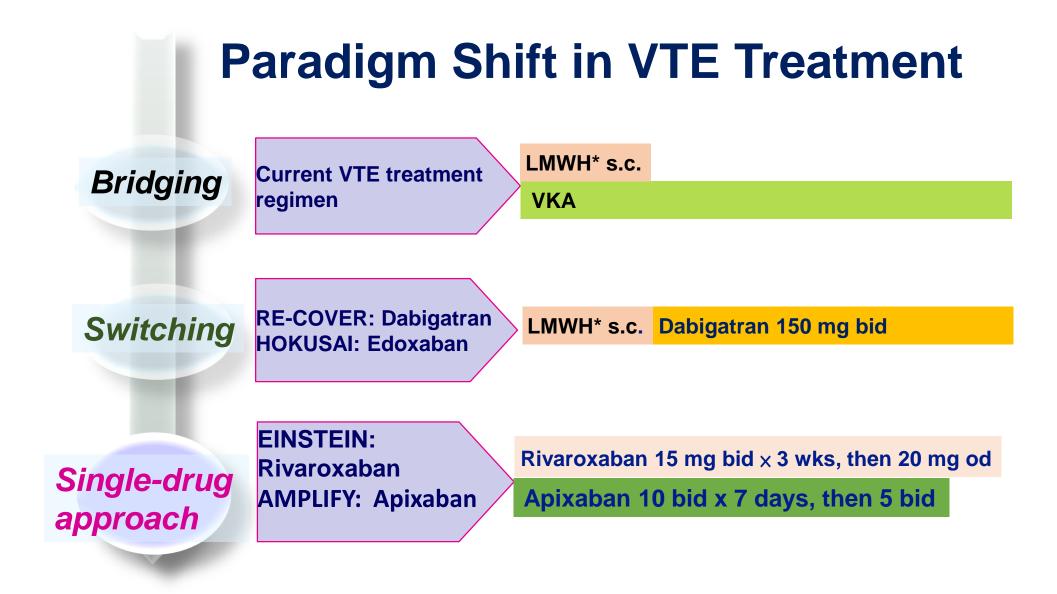

Overview of phase III clinical trials NOACs vs VKAs in VTE

	Dabiga	tran	Rivaroxa	ban	Apixaban	Edoxaban
Trial	RE-COVER	R I & II	EINSTEIN DV	T PE	AMPLIFY	Hokusai-VTE
Number of patients	2539	2568	3449	4832	5365	8240
Mean age ± SD (y)	54.9 ± 16.0		56.1 ± 16.4	57.7 ± 7.3	57.0 ± 16.0	55.8 ± 16.3
CrCl <30 mL/min, n (%)	22 (0.4)		15 (0.4)	6 (0.1)	29 (0.5)	n/a
Age ≥75 y, n (%)	529 (10)		440 (13)	843 (17)	768 (14)	1104 (13)
Prior VTE (%)	22		19	20	16	18
Unprovoked VTE (%)	35		62.0	64.5	89.8	65.7
Index event PE ± DVT (%)	31		0.7	100	34	40
Active Cancer (%)	4.8		6.0	4.6	2.7	2.5
Bridge with heparin/LMWH	Yes		No		No	Yes

BLOOD, 14 AUGUST 2014 x VOLUME 124, NUMBER 7


Efficacy of NOACs in VTE Treatment

Hazard ratios (HR) for recurrent VTE and VTE-related death and their 95% confidence intervals (CI) in phase 3 trials comparing NOACs with conventional therapy for acute VTE treatment


VOLUME 124, NUMBER 7

Hazard ratios (HR) for major <u>bleeding or major plus clinically relevant nonmajor bleeding</u> (CRNB) in phase 3 trials comparing NOACs with conventional therapy for acute VTE treatment

These DOACs have never been compared directly with each other

BLOOD, 14 AUGUST 2014 x VOLUME 124, NUMBER 7

1. Schulman S *et al.* N Engl J Med 2009;361:2342–2352; 2. RE-COVER II. Available at: http://clinicaltrials.gov. Trial ID: NCT00680186. Accessed August 2011; 3. The EINSTEIN Investigators. N Engl J Med 2010;363:2499–2510; 4. The EINSTEIN-PE Investigators. N Engl J Med 2012;366:1287–1297

Limitations of DOACs

- Anti-phospholipid syndrome
- Cancer associated VTE
- Cardiac Intervention when dual antiplatelet drugs indicated
- Mechanical Heart Valves

NOACs / DOACs – Approved use

Dabigatran, Rivaroxaban, Apixaban and Edoxaban

- Prevention of stroke and systemic embolism in atrial fibrillation (AF)
- Venous thromboembolism (VTE) prophylaxis in major orthopaedic surgery
- Treatment of acute VTE and secondary prevention of recurrent VTE
- Prevention of cardiovascular deaths after acute coronary syndrome (Rivaroxaban)

Real World Studies / Data

Phase 4 trials

Registries

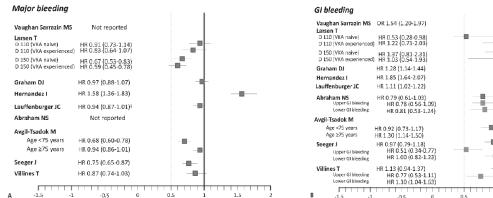
Post Authorisation safety/efficacy studies

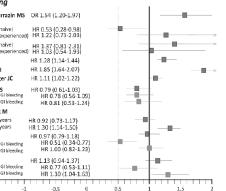
Prospective/Retrospective Observational studies

Pharmco-economic studies

How well does the drug perform in the real world ? Outcomes as expected from clinical trials ? Is the drug being used as recommended ? Eg indications, dose, duration Compliance issues ? Improved QOL ? Healthcare costs ?

Real-life studies have their inherent weaknesses :


- non-controlled and heterogeneous patient groups
- Physicians' prescribing bias in dosing and choice of patients
- uncontrolled influence of non-compliance, other concomitant medications and co-morbidities


BUT provide a wealth of data and insight into how DOACs are used in the real world

Dabigatran in 'real-world' clinical practice for stroke prevention in patients with non-valvular AF

First author, Year of publication	Study period; Database(s)	AF cohort type	Dabigatran bid dose
Sarrazin MS 2014	2010–2012; Veterans Affairs administrative data	VKA experienced	150 mg
Larsen T 2014	2011–2013; Danish National Prescription Registry, National Patient Register, Civil Registration System	OAC naïve or VKA Experienceed	110 mg or 150 mg
Graham DJ 2015	2010–2012; Medicare	OAC naive, Age 65y	150 mg or 75 mg (16% of the cohort)
Hernandez I 2015	2010–2011; Medicare (a 5% random sample)	OAC naive	NR
Lauffenburger JC 2015	2010–2012; Truven Health Market Scan Commercial Claims; Encounters and Medicare SupplementDatabases	OAC naive	150 mg or 75 mg
Abraham NS 2015	2010–2013; Optum Labs Data Warenhouse	OAC naive	150 mg
Avgil-Tsadok 2015	1999 (2011)-2013; Quebec hospital discharge database and Quebec physician and prescription claims database	OAC naive	110 mg or 150 mg
Seeger J 2015	2010–2012; MarketScan, Truven and Cliniformatic, Optum	OAC naive	150 mg or 75 mg (4% of the cohort)
Villines T 2015	2010–2012; The US Department of Defence	OAC naïve or VKA experienced	150 mg or 75 mg (12% of the cohort)

Dabigatran in 'real-world' clinical practice for stroke prevention in patients with non-valvular AF

Systematic Review 9 Studies More than 200,000 AF patients

Bleeding when compared to warfarin :

	< 75 yrs	> 75 years
Extra-cranial bleeds	110mg	110mg
	150 mg	150 mg
GIT Bleeds	110 mg	110 mg
	150 mg	150 mg

ICH				Stroke
				Stroke
Vaughan Sarrazin MS	OR 0.86 (0.21-3.53)		>	
Larsen T				Vaughan Sarra
D 110 (VKA naive) D 110 (VKA experienced)	HR 0.31 (0.17-0.55) HR 0.49 (0.28-0.86)			Larsen T
D 150 (VKA naive) D 150 (VKA experienced)	HR 0.32 (0.16-0.63) HR 0.38 (0.18-0.78)			Graham DJ
Graham DJ	HR 0.34 (0.26-0.46)	-8-		Hernandez I
Hernandez I	HR 0.32 (0.20-0.50)	-8		Lauffenburger
Lauffenburger JC	HR 0.51 (0.40-0.65)*	-8-		Abraham NS
Abraham NS	Not reported			Avgil-Tsadok N
Avgil-Tsadok M				Age <75 y
Age <75 years	HR 0.53 (0.34-0.81)			Age ≥75 y
Age ≥75 years	HR 0.60 (0.47-0.76)			
Seeger J	HR 0.31 (0.17-0.54)			Seeger J
Villines T	HR 0.49 (0.30-0.79)			Villines T
-1.5 -1	-0.5	0 0.5	1 1.5 2	D -1.5

Stroke				I	
Vaughan Sarrazin MS	Not reported				
Larsen T	Not reported				
Graham DJ	HR 0.80 (0.67-0.96)				
Hernandez I	Not reported				
Lauffenburger JC	HR 0.94 (0.87-1.01)§				
Abraham NS	Not reported				
Avgil-Tsadok M					
Age <75 years	HR 0.89 (0.72-1.10)		-8-	-	
Age ≥75 years	HR 1.05 (0.93-1.19)			 	
Seeger J	HR 0.77 (0.54-1.09)			-	
Villines T	HR 0.73 (0.55-0.97)				
D -1.5 -1	-0.5	0	0.5	1 1.	5 2

Tatjana S. Potpara1,2, Thromb Haemost 2015; 114: 1093-1098

Dabigatran in real-world atrial fibrillation

Meta-analysis of observational comparison studies with vitamin K antagonists

20 studies -711,298 patients, (210,279 dabigatran vs 501,019 VKA)

	Dabigatran / 100 Pt years	VKA/ 100 Pt years	HR	95% Cl
Ischaemic Stroke	1.65	2.85	0.86	0.74–0.99
Major Bleeding	3.93	5.61	0.79	0.69–0.89
Risk of mortality			0.73	0.61–0.87
Intracranial Bleed			0.45	0.38–0.52
GIT Bleed			1.13,	1.00-1.28
Myocardial Infarction			0.99,	0.89–1.11

- Lower risk of ischaemic stroke, major bleeding, intracranial bleeding and mortality
- Slightly Higher risk of GI bleeding
- Similar risk of myocardial infarction.

Other findings from real world data

(1) Dabigatran 75 mg dose -

- not in RE-LY trial but approved in the USA for use in the renal impaired CrCl 15-30 ml/min.
- Majority renal intact (33% chronic kidney disease, of which 20% severe renal impairment)
- significantly reduced risk of intracranial haemorrhages
- similar rates of stroke, bleeding and mortality compared to warfarin

(2) New starters of anticoaulation

- higher bleeding risk in warfarin new starter
- (3) Higher bleeding rates in the first 90 days of treatment in elderly new starters of both dabigatran or warfarin
- (4) Higher bleeding risk with renal impairment in both dabigatran and warfarin

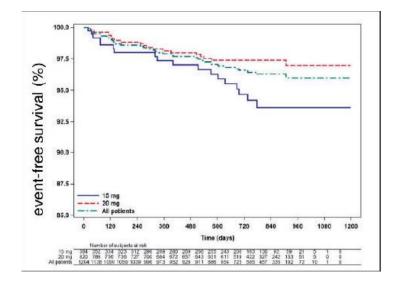
XANTUS: a real-world, prospective, observational Non Interventional study of patients treated with rivaroxaban for stroke prevention in AF

	Rocket AF	Xantus
Stroke Risks	No CHADs 0 or 1	12.7% CHA2DS2VAS 0 or 1.
Mean CHADs2 score	3.5%	2%
Previous Stroke/TIA/SE	55%	19%
Annual stroke rates (100 patient-years)	1.7	0.7
Bleeding Incidence (100 patient-years)	3.6	2.1
Fatal bleeding (100 patient-years)	0.2	0.2
Critical organ bleeding (100 patient-years)	0.8	0.7
ICH (100 patient-years)	0.5	0.4
Major BGIT (100 patient-years)	2.0	0.9

6784 pts, 311 centres
Europe, Israel, and Canada.
Mean age -71.5 years (range 19–99)
41% female,
Mean treatment duration 329 days.
9.4% documented severe or moderate renal impairment (CrCl 50 mL/min)

Persistence with rivaroxaban in XANTUS was 80% at 1 year,

Effectiveness and safety of rivaroxaban therapy in daily-care patients with AF - Results from the Dresden NOAC Registry


97.

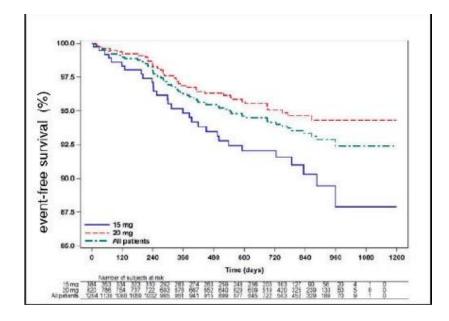
95.0

92.5

90.0

event-free survival (%)

	All riva- roxaban SPAF patients (n=1204)	Rivaroxaban 20 mg OD at baseline (n=820)	Rivaroxaban 15 mg OD at baseline (n=384)	P-value 20 mg vs 15 mg OD
Stroke/TIA/systemic embolism	1.7 (1.2–2.3)	1.25 (0.8–1.9)	2.7 (1.6–4.2)	0.0163
All major cardiovascular events	2.0 (1.4–2.6)	1.7 (1.2–2.5)	2.5 (1.5-4.0)	0.2145
ACS	1.1 (0.7–1.6)	0.8 (0.4–1.4)	1.8 (0.9–3.1)	0.0444
Major VTE	0.35 (0.2–0.7)	0.4 (0.1–0.8)	0.3 (0.04–1.1)	0.4752
Values are events/100 patient-years (95 % CI). ACS, acute coronary syndrome; VTE, venous thromboembol- ism.				


	All riva- roxaban SPAF patients (n=1204)	Rivaroxaban 20 mg OD at baseline (n=820)	Rivaroxaban 15 mg OD at baseline (n=384)	P-value 20 mg vs 15 mg OD
Stroke/TIA/systemic embolism	1.7 (1.2–2.3)	1.25 (0.8–1.9)	2.7 (1.6–4.2)	0.0163
All major cardiovascular events	2.0 (1.4–2.6)	1.7 (1.2–2.5)	2.5 (1.5–4.0)	0.2145
ACS	1.1 (0.7–1.6)	0.8 (0.4–1.4)	1.8 (0.9–3.1)	0.0444
Major VTE	0.35 (0.2–0.7)	0.4 (0.1–0.8)	0.3 (0.04–1.1)	0.4752
Values are events/100 patient-years (95 % CI). ACS, acute coronary syndrome; VTE, venous thromboembol-				

1776/2700 SPAF patients on rivaroxaban

Overall rates of stroke and systemic embolism :

- 2.03/100 pt-yrs in the intention-totreat analysis
- 1.7/100 pt-yrs in the on-treatment analysis.
- Considerably lower than those in the ROCKET AF trial
- 20 mg OD (1.25/100 pt-yrs)
- 15 mg OD (2.7/100 pt-yrs)

Effectiveness and safety of rivaroxaban therapy in daily-care patients with AF - Results from the Dresden NOAC Registry

	All rivaroxaban SPAF patients (n=1204)	Rivaroxaban 20 mg OD at baseline (n=820)	Rivaroxaban 15 mg OD at baseline (n=384)	P-value 20 mg vs 15 mg OD
Major bleeding	3.0 (2.3–3.8)	2.4 (1.7–3.3)	4.5 (3.0-6.5)	0.0073
Any bleeding	61.5 (57.2–66.0)	64.4 (59.1–70.0)	55.5 (48.5–63.2)	0.0593
Minor bleeding	34.9 (32.0–38.0)	37.9 (34.3–41.9)	28.4 (23.9–33.6)	0.0028
NMCR bleeding	22.75 (20.6–25.0)	22.2 (19.7–24.9)	24.0 (20.1–28.4)	0.3668
Values are events/100 patient-years (95% CI).				

Overall major bleeding - 3.0/100 pt-yrs 20 mg OD dose 4.5 /100 py\t-yrs 15 mg OD dose 2.4/100 pt-yrs

Rivaroxaban discontinuation rate - 12.0/100 pt/yrs

Table 6: Overview on the design, mean follow-up and outcomes of the presented analysis in comparison to ROCKET-AF and published "realworld" studies on the effectiveness and safety of NOAC therapy in AF.

Study	Drug	Design and duration of follow-up	Mean CHADS ₂ score	Effectiveness outcome (stroke/SE ± TIA)	Major bleeding
Dresden NOAC (present data)	rivaroxaban	Prospective cohort study; 796 days	2.4	2.0/100py (ITT) 1.7/100py (OT)	3.0/100ру
ROCKET-AF (6)	rivaroxaban	RCT; 707 days	3.5	2.1/100py (ITT) 1.7/100py (PP)	3.6/100py
XANTUS (19)	rivaroxaban	Prospective cohort study; 329 days	2.0	1.8/100py	2.1/100py
Lalibertè (17)	rivaroxaban	Retrospective database analysis; 83 days	2.0	4.6/100py	3.3/100py
Maura (24)	rivaroxaban	Retrospective database analysis; 80 days	UNK	1.4/100py (stroke/SE)	3.7/100py

2.9 events per 100 patient-years- large US study of electronic medical records of 27,467 patients

Lower major bleed rate than Rocket AF

N Engl J Med 2011; 365:883-891 Clin Cardiol. 2015; 38:63-8. Blood. 2014;124:955-62.

Rates of major bleeding with rivaroxaban in real-world

 Rates of major bleeding with rivaroxaban in real-world studies of non-valvular AF patients - a meta-analysis 9 studies 51,533 patients

	Major Bleeding	BGIT	ІСН
Rocket AF	3.6	3.2	0.5
Overall	3.32 (95% Cl¼2.28– 4.25)	2.41 (95% Cl¼1.25– 3.56)	0.40 (95% Cl¼0.17– 0.74)
5 retrospective claims studies	<mark>6.19</mark> (95% Cl¼2.29– 10.10)	4.21 (95% Cl¼2.61– 6.02)	<mark>0.52</mark> (95% Cl¼0.04– 1.51)
Prospective claims	1.98 (95% Cl¼1.15– 2.82)	0.61 (95% Cl¼0.02– 1.19)	0.32 95% CI¼0.05– 0.84

Real variability and heterogeneity

- clinical presentation patient profiles -CHA2DS2-Vasc and HAS-BLED
- ethnic differences
- doses of rivaroxaban
- concomitant use of the antiplatelet drugs)
- methodological characteristics

Comparative effectiveness and safety of non-VKAs and warfarin in patients with AF: propensity weighted nationwide cohort study

3 Danish nationwide databases - study population (61 678) :

Warfarin-57%, dabigatran-21%, rivaroxaban-12%, apixaban-10%

- Apixaban and Rivaroxaban more previous strokes, systemic embolism vascular disease and bleeding
- Dabigatran patients younger and less renal impaired
- Warfarin more vascular disease hypertension, renal impairment, COPD and cancer.

Annual rates%	Warfarin	Dabigatran	Rivaroxaban	Apixaban
Iscahemic stroke, Systemic emboli	3.3	2.8 NS	3.0 HR 0.83 (95% CI 0.69-0.99).	4.9 NS
Annual Death Risks	8.2	2.7	7.7 (NS)	5.2
Any Bleeding	5.0	2.4	5.3 (NS)	3.3

All NOACs seem to be safe and effective alternatives to warfarin in a routine care setting

NOT Direct Comparisons

The safety and persistence of non-vitamin-K-antagonist oral anticoagulants in atrial fibrillation patients treated in a well structured atrial fibrillation clinic

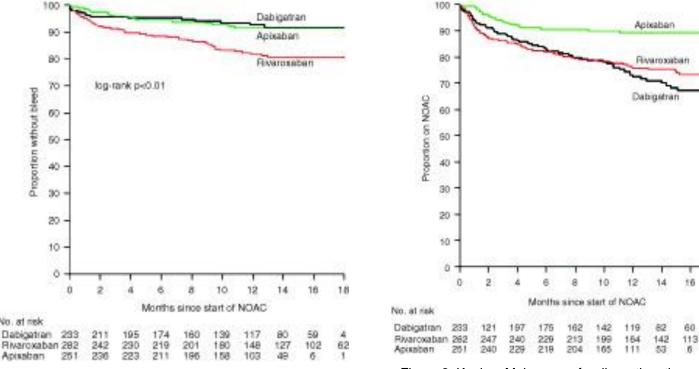


Figure 1. Kaplan–Meier curve for all bleeding events stratified for dabigatran, rivaroxaban and apixaban.

Figure 2. Kaplan–Meier curve for discontinuation events stratified for dabigatran, rivaroxaban and apixaban.

16

18

42

68

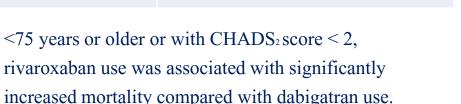
Swedish registry

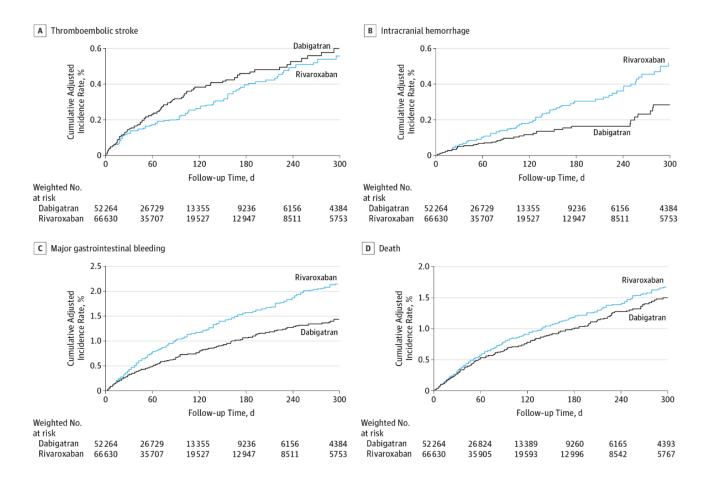
766 consecutive patients with AF Initiation of treatment:

- dabigatran (233) •
- rivaroxaban (282)
- apixaban (251)

Median age was 74 years (range 36–95)

Comparable pt charateristics


Median FU - 367 days


NOT Direct Comparisons

Stroke, Bleeding, and Mortality Risks in Elderly Medicare Beneficiaries Treated With Dabigatran or Rivaroxaban for Nonvalvular Atrial Fibrillation

USA - Retrospective new-user cohort study of Medicare 118 891 pts < <65 years or older, mean follow-up 108d (D) and 111d (R)

	Rivaroxaban	Dabigatran
(A) TE events	.↓	
	HR, 0.81; 95%CI, 0.6	5-1.01; P = .07
(В) ІСН		•
	HR, 1.65; 95%CI, 1.2	20-2.26; P = .002
(C) Major BGIT		•
	HR, 1.48; 95%CI, 1.3	2-1.67; <i>P</i> < .001
(D) Cumulative incidence rates		•
	HR, 1.15; 95%CI, 1.00-1.32; <i>P</i> =.051	

NOT Direct Comparisons

JAMA Intern Med. 2016;176(11):1662-1671.

Real World Doacs -- Asia AF

Taiwan National Health Insurance Research Database

The HRs (95% CIs) comparing dabigatran with warfarin : ischemic stroke, 0.62 (0.52–0.73; *P*<0.0001) Intracranial hemorrhage, 0.44 (0.32–0.60; *P*<0.0001) All hospitalized major bleeding, 0.58 (0.46– 0.74; *P*<0.0001) All-cause mortality, 0.45 (0.38–0.53; *P*<0.0001) myocardial infarction, 0.67 (0.43–1.05; *P*=0.0803) major GIT bleeding, 0.99 (0.66–1.49; *P*=0.9658)

- Dabigatran did not increase the risk of myocardial infarction or major BGIT in all age groups when compared with warfarin.
- 8772 patients (88%) took a 110-mg dose dabigatran. The magnitude of effect for each outcome of 110-mg was comparable with that of 150-mg dose in the subgroup analysis

A multicenter retrospective cohort study of 241 stroke centers in Japan

Patients with AF treated with a DOAC when compared with those on warfarin, had a lower rates of intracranial haemorrhage (17% vs 26%) and mortality (16% vs 35%)

Thromboembolic, Bleeding, and Mortality Risks of Rivaroxaban and Dabigatran in Asians With Nonvalvular Atrial Fibrillation

Yi-Hsin Chan, et al

Nationwide retrospective cohort study was conducted of consecutive patients with NVAF Taiwan National Health Insurance Research Database – Feb to Dec, 2013 Rivaroxaban (3,916), dabigatran (5,921), or warfarin (5,251) The propensity score weighting method was used to balance covariates across study groups. 3,425 (87%) - rivaroxaban (10 to 15 mg once daily) 5,301 (90%) - dabigatran (110 mg twice daily)

Compared with warfarin, both rivaroxaban and dabigatran significantly decreased the risk:

- ischemic stroke or systemic embolism (p 0.0004 and p 0.0006, respectively)
- intracranial hemorrhage (p 0.0007 and p 0.0005, respectively)
- all-cause mortality (p < 0.0001 and p < 0.0001,)

Comparing Dabigatran and Rivaroxaban (NOT direct comparisons)

- no differences were found regarding risk for ischemic stroke or systemic embolism, intracranial hemorrhage, myocardial infarction, or mortality.
- Rivaroxaban higher risk for hospitalization for GI bleeding than dabigatran (p 0.0416)
- Rivaroxaban on-treatment analysis showed that the risk for hospitalized GI bleeding was similar between the 2 drugs (p 0.5783)

DOAC - Ideal Anticoagulant ?

- Oral administration
- Good Efficacy and Safety
- Metabolic Properties with No FEW food and drug interaction
- No need for coagulation monitoring
- Specific Reversal Agents NOT available (until recently)

Real Life Management Issues

European Heart Journal Advance Access published April 26, 2013

European Heart Journal doi:10.1093/eurheartj/eht134

EHRA Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary[†]

Hein Heidbuchel¹*, Peter Verhamme¹, Marco Alings², Matthias Antz³, Werner Hacke⁴, Jonas Oldgren⁵, Peter Sinnaeve¹, A. John Camm⁶, and Paulus Kirchhof^{7,8}

New Oral Anticoagulant - A practical guide on behalf of the Australasian Society of Thrombosis and Haemostasis (ASTH)

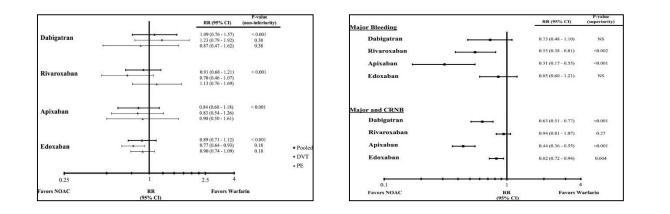
Huyen Tran¹, Joanne Joseph², Laura Young³, Simon McRae⁴, Jennifer Curnow⁵, Harshal Nandurkar⁶, Peter Wood⁷, Claire McLintock⁸

Clinical Update

Consensus Recommendations for Preventing and Managing Bleeding Complications Associated with Novel Oral Anticoagulants in Singapore

Heng Joo <u>Ng</u>, ¹*MBBS*, *MRCP*, *FRCPath*, Yen Lin <u>Chee</u>, ²*MBChB*, *FRCP*, *FRCPath*, Kuperan <u>Ponnudurai</u>, ³*MBBS*, *FRCP*, *FRCPath*, Lay Cheng <u>Lim</u>, ⁴*MBBS*, *FRCP*, *FAMS*, Daryl <u>Tan</u>, ⁵*MMed*, *MRCP*, *FAMS*, Jam Chin <u>Tay</u>, ⁶*MBBS*, *FRCP*, *FAMS*, Pankaj Kumar <u>Handa</u>, ⁶*MBBS*, *MRCP*, *FAMS*, Mufeedha <u>Akbar Ali</u>, ¹*Bsc*, Lai Heng <u>Lee</u>, ¹*MBBS*, *MMed*, *FAMS* For the Chapter of Haematologist, College of Physicians, Academy of Medicine Singapore

Anticoagulation: a GP primer on the new oral anticoagulants


DOACs in Clinical Practice

- Important advancement in antithrombotic management
- Careful patient / drug selection
- Monitoring of patients (not INR)
- Limit bleeding events and thrombotic complications
 - Know your Drug
 - Appropriate prescription and dosing
 - Know the high risk situations
 - Ability to handle bleeds

Pharmacological Properties of the DOACs

	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Target	Factor IIa	Factor Xa	Factor Xa	Factor Xa
Half-life (hour)	12-17	5-9	12	6-10
Time to peak effect (hour)	1-3	2-4	1-3	1-2
Dosing in non-valvular AF	150 mg BID	20 mg OD	5 mg BID	60 mg OD
Dosing in VTE treatment	150 mg BID after 5-10 days of parenteral anticoagulation	15 mg BID for 21 days followed by 20 mg OD	10 mg BID for 7 days followed by 5 mg BID	60 mg OD after 5 days of parenteral anticoagulation
Renal clearance as unchanged drug (%)	80	33	27	50
Drug Interactions Pathways	P-gp	3A4/P-gp	3A4/P-gp	3A4/P-gp

Appropriate choice of drug

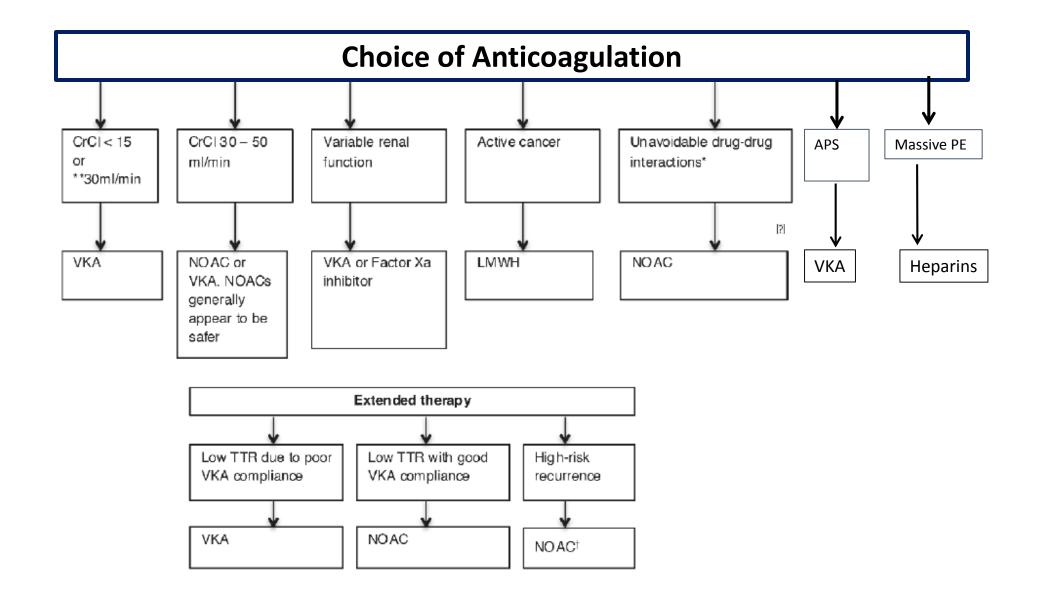
NOT head to head comparative trials All comparing with warfarin/LMWH Does not indicate which NOAC is superior over others

Indications and available data

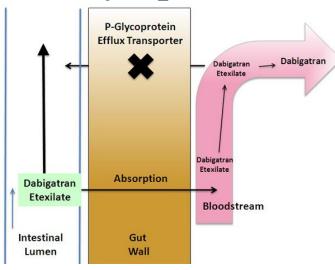
Co-morbidities – eg renal function, history of BGIT

Other medications

Availability and costs

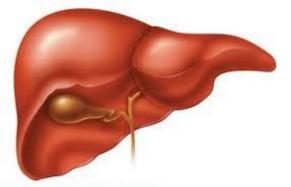

Patient preference

Choice of Anticoagulant


Characteristic	Drug choice	Rationale
All-oral therapy	Rivaroxaban or apixaban	Only NOACs to be evaluated in all-oral regimens
Dyspepsia or upper gastrointestinal symptoms	Rivaroxaban, apixaban, or edoxaban	Dyspepsia in as much as 10% given dabigatran
Recent gastrointestinal bleed	Apixaban	More GI bleeding with dabigatran, rivaroxaban, edoxaban than with warfarin
Recent acute coronary syndrome	Rivaroxaban, apixaban or edoxaban	Small myocardial infarction signal with dabigatran
Poor compliance with long-term twice-daily dosing	Rivaroxaban or edoxaban	OD regimens for long-term use
Unstable INRs despite compliance	NOACs	Unstable INRs predispose to thrombotic and bleeding complications
Limited access to anticoagulation clinic	NOAC	Given in fixed doses without monitoring
Creatinine clearance 30-50 mL/min	Rivaroxaban, apixaban, or edoxaban	Less affected by renal impairment than dabigatran; if edoxaban is chosen, the 30- mg OD dose should be used

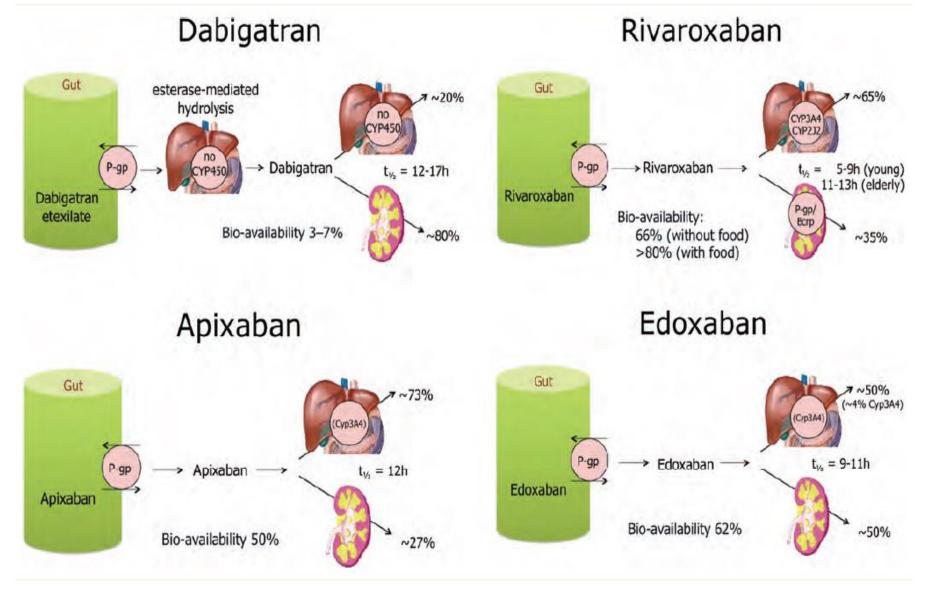
Choice of Anticoagulant -- Patients who should NOT be on NOACs

Characteristic	Drug choice	Rationale
Extensive DVT or massive PE	Heparin	Require advanced therapy and were excluded from trials with the NOACs
High initial risk of bleeding	Heparin	Enables dose titration; rapid offset and availability of protamine as an antidote should bleeding occur
Anti-phospholipid syndrome	Warfarin	Inadequate data for this highly thrombotic diseases
Pregnancy	LMWH	Warfarin and NOACs cross the placenta
Active cancer	LMWH	No trials comparing NOACs with LMWH
Creatinine clearance <30 mL/min	Warfarin	Such patients excluded from trials with NOACs
Creatinine clearance 30-50 mL/min (UNSTABLE)	Warfarin	Avoid overdosage in events of renal deterioration
AF with mitral stenosis, valve abnormalities	Warfarin	No data on efficacy
Mechanical Heart Valves	Warfarin	Clinical Trial failed
CYP3A4 and P-gp strong inducers/inhibitors	Warfarin/LMWH	Under/over exposure


P-Glycoprotein

DOAC Metabolism and Drug Interactions

- P-gp inducers reduces drug level
- P-gp inhibitors increases drug level


CYP3A4/5 Metabolism

•Strong inducers of CYP3A4/5 decrease exposure of drug

•CYP3A4 Inhibitors increase blood concentrations drug

DOAC Metabolism and Drug Interactions

EHRA Practical Guideline. Europace (2013) 15, 625–651

Interacting drug	Class	Anticoagulant effects		
Interacting drug	Class	Dabigatran	R ivaroxaban	Apixaban
Ketoconazole	Anti-fungal	↑ ↑	↑ ↑	↑ ↑
Itraconazole	Anti-fungal	ND	$\uparrow\uparrow$	1 1
Voriconazole	Anti-fungal	ND	↑ ↑	^
Posaconazole	Anti-fungal	ND	↑ ↑	↑ ↑
Fluconazole	Anti-fungal	ND	Î	Ť
Clarithromycin	Antibiotic	Î	1	1
Erythromycin	Antibiotic	ND	1	1
Ritonavir	Anti-HIV	ND	↑ ↑	↑ ↑
Verapamil	Anti-arrhythmic	Î	1	1
Amiodarone	Anti-arrhythmic	Ť	1	Ť
Diltiazem	Anti-arrhythmic	ND	Î	1
Quinidine	Anti-arrhythmic	Ť	Î	ND
Rifampicin	Anti-tuberculosis	Ļ	Ļ	Ļ
Phenytoin	Anti-convulsant	ND	Ļ	\downarrow
Carbamazepine	Anti-convulsant	\downarrow	Ļ	Ļ
St John'sWort	Herbal	\downarrow	Ļ	Ļ

Table 2. Interactions Between NOACs and Some Commonly Used Drugs

ND: No data; HIV: human immunodeficiency virus

↑↑: anticoagulant effect likely to be increased; ↑: anticoagulant effect may be increased; ↓: anticoagulant effect may be decreased

Early release, published at www.cmaj.ca on November 21, 2016. Subject to revision.

CMAJ

Association between statin use and ischemic stroke or major hemorrhage in patients taking dabigatran for atrial fibrillation

🟃 StatinDabigatranBleed2016.pdf - Adobe Reader

File Edit View Window Help

Tony Antoniou PhD, Erin M. Macdonald MSc, Z Mina Tadrous PharmD PhD, Muhammad M. Ma for the Canadian Drug Safety and Effectiveness

Infographic available at www.cmaj.ca/lookup/suppl/doi:10.

- Abstract

Background: Dabigatran etexilate is a prodrug whose absorption is opposed by intestinal P-glycoprotein and which is converted by carInfographic available at www.cmaj.ca/lookup/suppl/doi:10.1503/cmaj.160303/-/DC2

w

Research

ABSTRACT

Background: Dabigatran etexilate is a prodrug whose absorption is opposed by intestinal P-glycoprotein and which is converted by carboxylesterase to its active form, dabigatran. Unlike other statins, simvastatin and lovastatin are potent inhibitors of P-glycoprotein and carboxylesterase, and might either increase the risk of hemorrhage with dabigatran etexilate or decrease its effectiveness.

Methods: We conducted 2 population-based, nested case-control studies involving Ontario residents 66 years of age and older who started dabigatran etexilate between May 1, 2012, and Mar. 31, 2014. In the first study, cases were patients with ischemic stroke; in the second, cases were patients with major hemorrhage. Each case was matched with up to 4 controls by age and sex. All cases and controls received a single statin in the 60 days preceding the index date. We determined the association between each outcome and the use of simvastatin or lovastatin, relative to other statins.

Results: Among 45 991 patients taking dabigatran etexilate, we identified 397 cases with ischemic stroke and 1117 cases with major hemorrhage. After multivariable adjustment, use of simvastatin or lovastatin was not associated with an increased risk of stroke (adjusted odds ratio [OR] 1.33, 95% confidence interval [CI] 0.88 to 2.01). In contrast, use of simvastatin and lovastatin were associated with a higher risk of major hemorrhage (adjusted OR 1.46, 95% CI 1.17 to 1.82).

Interpretation: In patients receiving dabigatran etexilate, simvastatin and lovastatin were associated with a higher risk of major hemorrhage relative to other statins. Preferential use of the other statins should be considered in these patients.

Possible Drug Interactions ?

Competing interests: See end of article.

This article has been peer reviewed.

Disclaimer: Muhammad Mamdani is a member of the *CMAJ* Editorial Advisory Board and was not involved in the editorial decision-making process for this article.

Accepted: July 12, 2016 Online: Nov. 21, 2016

Correspondence to: Tony Antoniou, tantoniou@smh.ca

(1)

CMAJ 2016. DOI:10.1503/ cmaj.160303

95%) 🕝 🔺 🛱 🕩

10:43 AM

19/05/2017

Coagulation Monitoring and Lab Testing

- Routine therapeutic monitoring not indicated
- Lab measurement for residual drug effect:
 - Before surgery or invasive procedure
 - Trauma
 - Suspected overdose drug interactions, renal impairment
 - The bleeding patient
 - Major Bleeds access anticoagulation effects of drugs
 - Is bleeding due to high drug levels or other reasons ?

Assays for NOACs testing

	Dabigatran	Rivaroxaban and Apixaban
Qualitative/semiquantitative for high levels	aPTT with a sensitive reagent	PT with a sensitive reagent
Highly sensitive screen	TT	Anti-Xa
Quantitative (using appropriate calibrators)	Diluted TT, factor IIa, Ecarin clotting time	Anti-Xa

Abbreviations: aPTT, activated partial thromboplastin time; DOAC, direct oral anticoagulant; PT, prothrombin time; TT, thrombin time.

- Effects of NOACs on clotting tests are variable
- Clotting times do not accurately reflect drug levels / anticoagulant effect
- Degree of prolongation is highly dependent on the reagent used for the assay.
- Detect peak or supra-therapeutic drug levels
- May be normal during low or trough drug levels.
- Calibrated assays for quantification of drug levels
- Clotting times may be abnormal from other reasons
- Does NOT provide an accurate assessment of risk of surgical bleeds

		Interference	
Test	Assay Principle	Anti-Xa	Anti-Ila
PT/INR	Coagulation	Yes	Yes
APTT	Coagulation	Yes	Yes
Thrombin time	Coagulation	No	Yes
Fibrinogen	Coagulation	No	Yes
Factor II, V, VII, VIII, IX, X, XI, XII	Coagulation	Yes	Yes
Factor XIII	Chromogenic	No	No
Factor VIII chromogenic	Chromogenic	Yes	No
Protein C activity	Chromogenic	No	No
Protein S activity	Coagulation	Yes	Yes
Antithrombin activity	Chromogenic	Yes	Yes
Protein C antigen	Immunoassay	No	No
Protein S antigen	Immunoassay	No	No
Antithrombin antigen	Immunoassay	No	No
Plasminogen activity	Chromogenic	No	No
APC-resistance	Coagulation	Yes	Yes
Lupus anticoagulant	Coagulation	Yes	Yes
D-Dimers	Immunoassay	No	No
Thromboelastometry	Coagulation	Yes	Yes
Reptilase time	Coagulation	No	No

Table 2. Interference of DOACs With Anti-Xa and Anti-Ila Action Upon Various Coagulation Tests

Assays, which do not involve generation of factorXa or IIa, not affected.

D dimers immunoassays Reptilase time Ecarin clotting time

Semin Hematol51:98–101.

Monitoring of patient on DOACs

- NO monitoring of INR
- Need to monitor patients
- Be mindful of the few drug interactions
- Need to monitor renal function

Management of DOAC- associated Bleeding

• **Best Strategy – PREVENT** Bleeds

- Know your Drug and Bleeding risks
- Patient selection
- Dose adjustment
- Know what to do when bleeding occurs

Conditions that require attention

- Determinants for Bleeding
 - Combined anticoagulant and antiplatelet treatment
 - The elderly
 - Unstable renal function
- When switching Anticoagulants
- Perioperative Bridging anticoagulation

Determinants of Bleeding

Patient's characteristics

- Age > 75 years
- Uncontrolled hypertension (SBP > 180mm Hg or DBP > 100 mm Hg)
- Comorbidities Liver disease, Renal Disease
- Alcohol excess, poor drug compliance or clinic attendance
- Bleeding lesions (BGIT, recent ICH)
- Bleeding tendency (coagulation defects, thrombocytopenia)

Anticoagulant Effect

- Intensity of anticoagulation
- Concomitant use of NSAIDs and antibiotics
- Instability of INR control and INR > 3
- Pharmacogenetic factors P450 CYP2C9
- P-gp induction
- CYP34A inhibition

Switching between DOACs and other anticoagulants

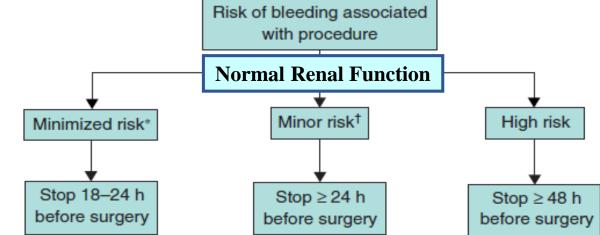
- The rate of clearance of the DOACs.
- Half life of LMWH / Heparin
- The time needed to titrate warfarin to therapeutic range
- The influence of the DOACs on INR measurement
- The need for overlap therapy as determined by the indication for anticoagulation.

When switching anticoagulants

Conversion	Start times recommenced
From VKAs to NOAC	Discontinue VKA and start DOAC when INR<2
From NOAC to parenteral	Start parenteral anticoagulant 12 h after last dose of DOAC
From parenteral to NOAC	Start DOAC at the same time or up to 2 hours before the next parenteral drug dose. For continuous infusions of parenteral drugs, start DOAC at the time of discontinuation of the continuous infusion.
From NOAC to VKAs	Start times for VKAs are based on renal function

When switching anticoagulants - DOAC to VKAs

Calculated creatinine clearance, mL/min	Dabigatran: start day with warfarin	Rivaroxaban : start day with warfarin
>50	Day -3	Day -4
31-50	Day -2	Day -3
15-30	Day -1	Day -2
		BLOOD 2012 119: 3016-3023


Estimated drug half-lives and effect on area under the curve NOAC plasma concentrations in different stages of chronic kidney disease compared to healthy controls

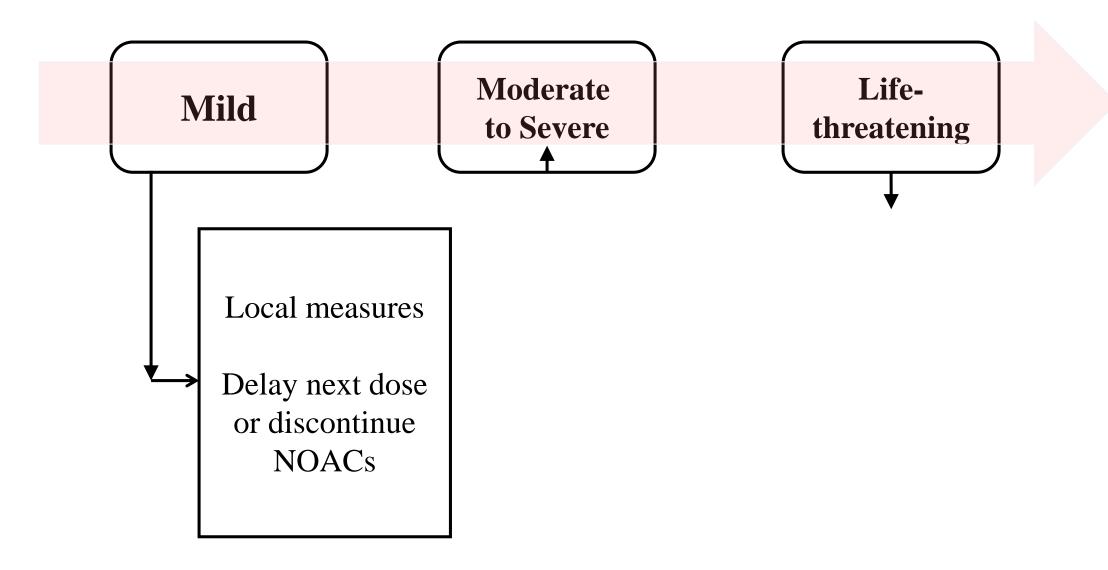
	Dabigatran	Apixaban	Edoxaban ^a	Rivaroxaban
CrCl ≥60 ml/min CKD Stage I and II	\sim 14 h ⁴⁸	/XX4/S9X4////,	~8.6 h ⁴⁹	~8.5 h ⁵⁰ (+44%)
CrCl 30–60 ml/min CKD Stage III	\sim 18 h ⁴⁸	/Md/Cata/////	~9.4 h ⁴⁹	~9 h (+52%)
CrCl 15–30 ml/min CKD Stage IV	\sim 28 h ⁴⁸	//////////////////////////////////////	~16.9 h ⁴⁹	~9.5 h (+64%)
CrCl ≤15 ml/min CKD Stage V	No data	/XX0/data/////	No data	No data

Europace (2013) 15, 625–651

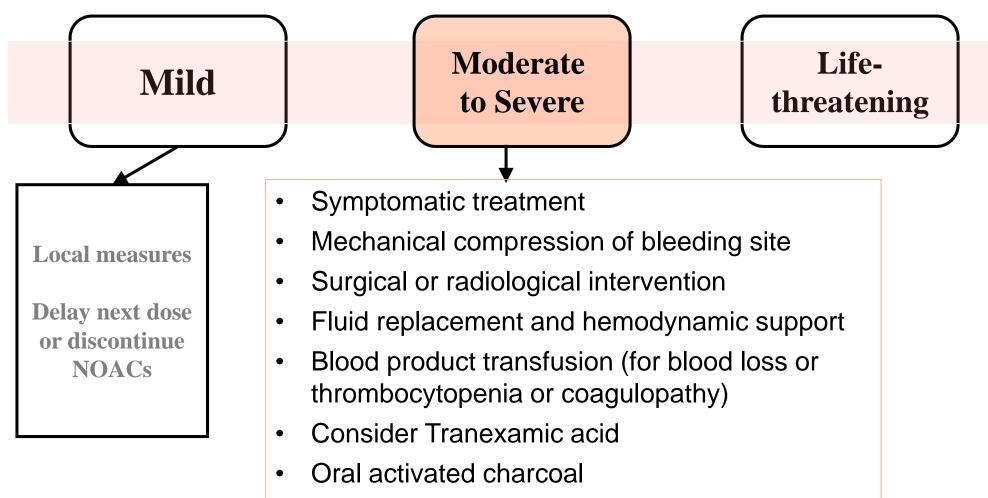
Peri-surgery Management of DOACs

Check Renal Function before surgery

Creatinine		Suggested interruption (h)		
clearance (ml/min)	Risk of bleeding	Rivaroxaban	Apixaban	Dabigatran
≥ 80	Low	≥ 24	≥ 24	≥ 24
	High	≥ 48	≥ 48	≥ 48
50-79	Low	≥ 24	≥ 24	≥ 36
	High	≥ 48	≥ 48	≥ 72
30-49	Low	≥ 24	≥ 24	≥ 48
	High	<u>≥</u> 48	≥ 48	≥ 96
15-29	Low	<u>≥</u> 36	≥ 3 6	Not indicated
	High	≥ 48	≥ 48	Not indicated
< 15		No in	dication for an	y agent

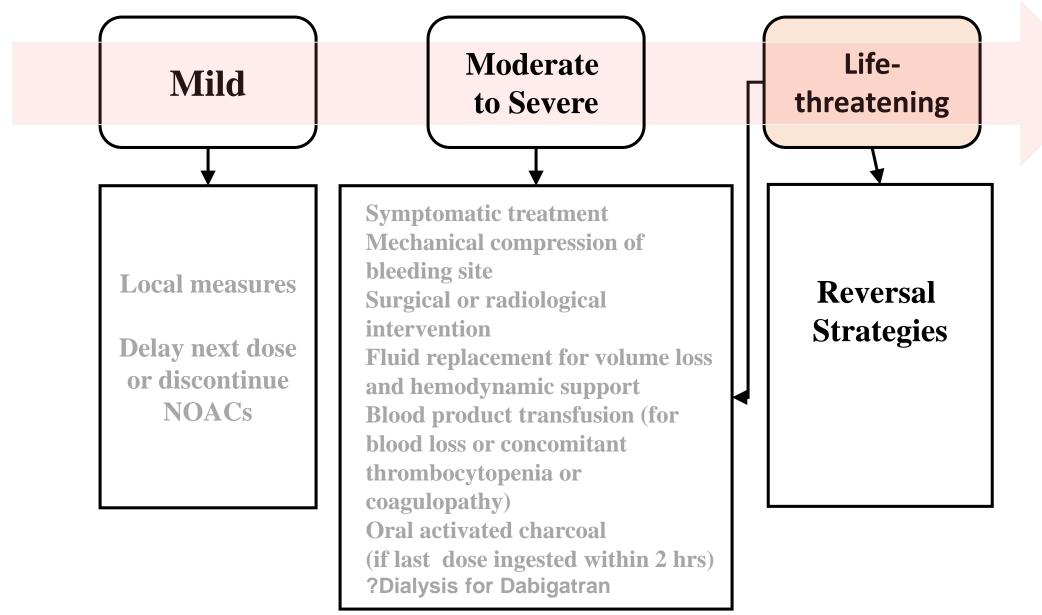

When Patient Bleeds

- Anticoagulants do not CREATE bleeds
- Increase the intensity of bleeding^{1,2}
- Principles of bleeding management:
 - Are not primarily directed against anticoagulant therapy
 - Are aimed at stopping and controlling the severity of bleeding


When Patient Bleeds

- Establish the cause, site and severity for bleed
- Confirm which anticoagulant was ingested
- Timing of the last ingested dose
- Other contributors to bleed eg. anti-platelet medications
- Use of reversal agents is one of many aspects in management options in severe bleeding
- Do NOT give vitamin K and FFP for Reversal

Strategies for bleeding while on DOACs

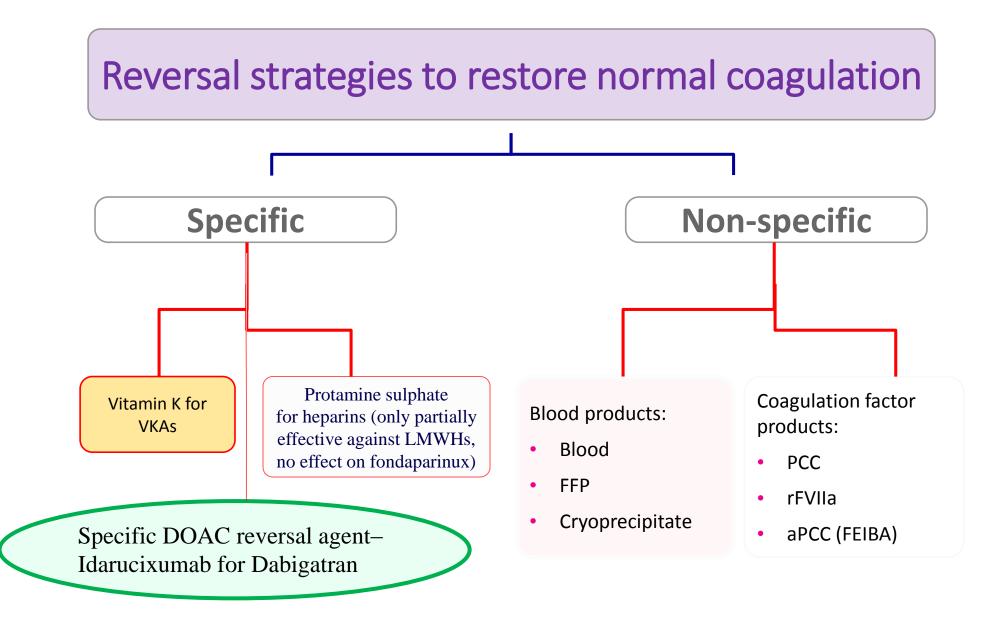

Strategies for bleeding while on DOACs

• Dialysis for Dabigatran

Anticoagulant effects wear out with time !

Strategies for bleeding while on DOACs

URGENT Reversal of Anticoagulation required:


BLEEDING

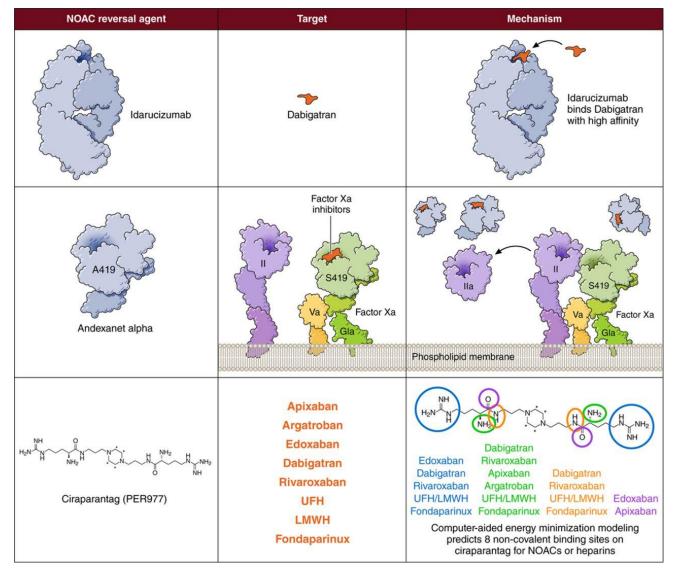
Life-threatening bleeding - Intracranial hemorrhage - symptomatic or progressing **Bleeding in a closed space or critical organ** - Intra-spinal, intraocular, pericardial, pulmonary, retroperitoneal, intramuscular with compartment syndrome.

Persistent major bleeding despite local hemostatic measures - Esophageal varices Risk of recurrent bleeding because of delayed DOAC clearance or DOAC overdose

EMERGENCY SURGERY / PROCEDURE

- Associated with a high risk of bleeding
- Neurosurgery (intracranial, extradural, or spinal), lumbar puncture, cardiac or vascular surgery (aortic dissection/aneurysm repair), hepatic or other major organ surgery

Reversal strategy	Animal studies ²³ (dabigatran-treated animals)	Ex vivo studies (dabigatran-treated volunteer or patient plasma)	In vivo human studies (dabigatran-treated healthy volunteers)
PCC	No change in blood loss in mouse tail transection model	Variable effect on TG indices ^{25,27}	No correction of APTT, ECT, TT ²⁰
	Reduced intracranial hematoma expansion and 24 hr mortality in mice	Corrected PT, APTT, TT, but not Hemoclot assay ²⁷	
	Reduced blood loss following kidney incision in rabbits		
	Reduced bleeding time, no effect on coagulation tests in rat tail transection model		
aPCC	No change in blood loss after tail transection in mice	Variable effect on TG indices ²⁵	
	Reduced bleeding time, no effect on coagulation tests in rat tail transection model	Corrected PT, APTT, but not Hemoclot assay ²⁷	
rVIIa	No change in blood loss after tail transection in mice	Variable effect on TG indices ²⁵	
	No change in intracranial hematoma expansion and 24 hr mortality in mice	No correction of PT, APTT and Hemoclot assay ²⁷	
	Reduced bleeding time, no effect on coagulation tests in rat tail transection model	-	


Table 3. Published studies of nonspecific agents for reversal of dabigatran anticoagulant effect in animals and humans

Hematology 2015

Reversal strategy	Animal studies ²³ (factor Xa inhibitor-treated animals)	Ex vivo studies (factor Xa inhibitor-treated volunteer or patient plasma)	In vivo human studies (factor Xa-inhibitor-treated volunteers)
PCC			
Rivaroxaban	Corrected APTT	Corrected PT ²⁷	Corrected PT ²⁰
	Variable effect on PT	Variable effect on TG indices ^{25,27}	Partially corrected PT (4-PCC > 3-PCC) ²¹
	No reduction of blood loss in rabbits	No correction of anti-Xa activity ²⁷	Variable effect on TG indices (3-PCC > 4-PCC) ²¹
	Reduced bleeding time in rats, but not primates		No correction of APTT, anti-Xa activity ²¹
Apixaban	No correction of PT		
	No reduction in hepatosplenic blood loss in rabbits		
Edoxaban	Reduced time to hemostasis and blood loss in rabbit kidney incision model ⁴⁰		Reversal of prolonged bleeding duration after punch biopsy (50 IU/kg dose) ²²
aPCC	2		
Rivaroxaban	Corrected aPTT	Corrected PT ²⁵	
	Variably corrected PT	Corrected TG indices ^{25,27}	
	No reduction of blood loss in rabbits	No correction of anti-Xa activity ²⁷	
	Reduced bleeding time in rats and primates		
Edoxaban	Reduced bleeding time in rats		
rVIIa	-		
Rivaroxaban	Corrected PT	Corrected PT ²⁷	
	Reduced bleeding time in rats, but not primates	Variable effect on TG indices ²⁵	
	-	No correction of anti-Xa activity ²⁷	
Apixaban	Corrected PT	-	
-	No reduction in hepatosplenic blood loss in rabbits		Hematology 202
Edoxaban	Reduced bleeding time in rats		

Table 4. Published studies of nonspecific agents for reversal of oral factor Xa inhibitor anticoagulant effect in animals and humans

Specific DOAC reversal agents.

Christian T. Ruff et al. Circulation. 2016;134:248-261

Idarucizumab (Dabi-Fab) is a humanized Ab fragment that binds to dabigatran, preventing it from binding to thrombin and neutralizing its anticoagulant effect.

Andexanet alfa (And-a) is a modified inactive recombinant FXa that binds circulating FXa inhibitors, allowing native FXa to convert prothrombin to thrombin and restore the coagulation cascade.

Ciraparantag - small synthetic molecule that competitively binds the NOACs, restoring activity of blocked coagulation factors.

ORIGINAL ARTICLE

Idarucizumab for Dabigatran Reversal

Charles V. Pollack, Jr., M.D., Paul A. Reilly, Ph.D., John Eikelboom, M.B., B.S., Stephan Glund, Ph.D., Peter Verhamme, M.D., Richard A. Bernstein, M.D., Ph.D., Robert Dubiel, Pharm.D., Menno V. Huisman, M.D., Ph.D., Elaine M. Hylek, M.D., Pieter W. Kamphuisen, M.D., Ph.D., Jörg Kreuzer, M.D., Jerrold H. Levy, M.D., Frank W. Sellke, M.D., Joachim Stangier, Ph.D., Thorsten Steiner, M.D., M.M.E., Bushi Wang, Ph.D., Chak-Wah Kam, M.D., and Jeffrey I. Weitz, M.D.

N Engl | Med 2015;373:511-20.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Andexanet Alfa for Acute Major Bleeding Associated with Factor Xa Inhibitors

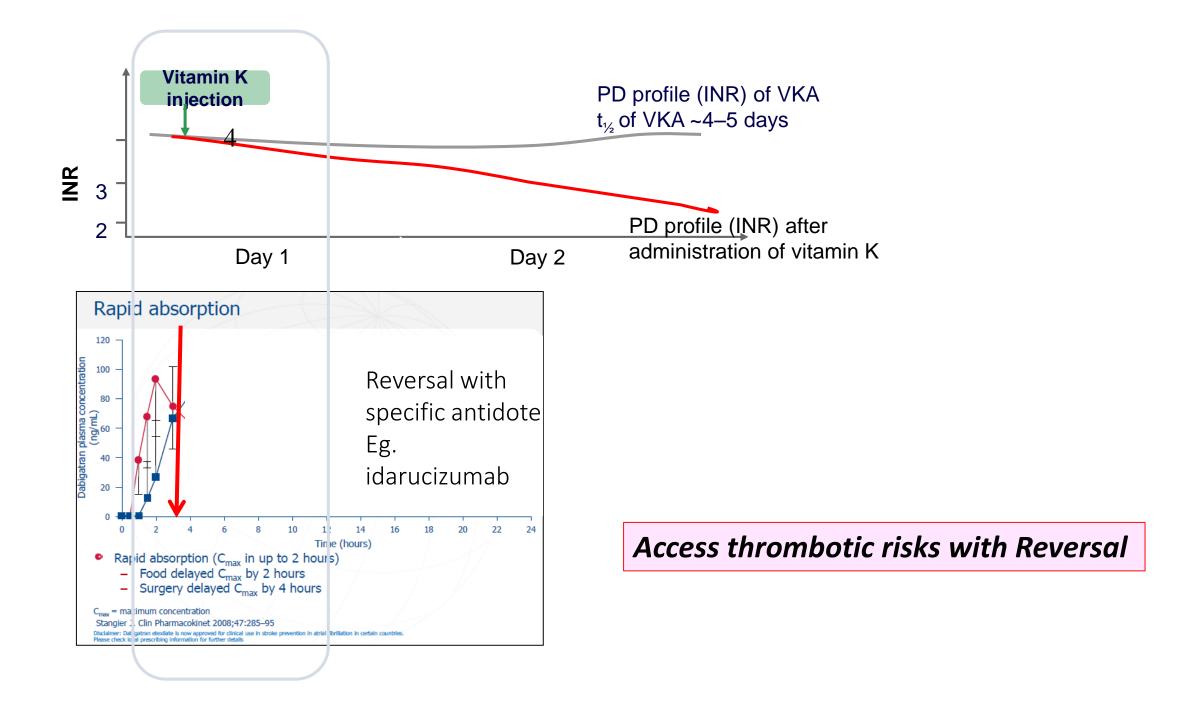
Stuart J. Connolly, M.D., Truman J. Milling, Jr., M.D., John W. Eikelboom, M.D., C. Michael Gibson, M.D., John T. Curnutte, M.D., Ph.D., Alex Gold, M.D., Michele D. Bronson, Ph.D., Genmin Lu, Ph.D., Pamela B. Conley, Ph.D., Peter Verhamme, M.D., Ph.D., Jeannot Schmidt, M.D., Saskia Middeldorp, M.D., Alexander T. Cohen, M.D., Jan Beyer-Westendorf, M.D., Pierre Albaladejo, M.D., Jose Lopez-Sendon, M.D., Shelly Goodman, Ph.D., Janet Leeds, Ph.D., Brian L. Wiens, Ph.D., Deborah M. Siegal, M.D., Elena Zotova, Ph.D., Brandi Meeks, B.Eng., Juliet Nakamya, Ph.D., W. Ting Lim, M.Sc., and Mark Crowther, M.D., for the ANNEXA-4 Investigators*

N Engl J Med 2016;375:1131-41.

Thrombosis Research 146 (2016) 113-118

Full Length Article

Ciraparantag safely and completely reverses the anticoagulant effects of low molecular weight heparin☆


Jack E. Ansell^a, Bryan E. Laulicht^b, Sasha H. Bakhru^b, Maureane Hoffman^c, Solomon S. Steiner^b. James C. Costin^{b,*}

a Hofstra North Shore/LIJ School of Medicine, Hempstead, NY, United States ^b Perosphere Inc., Danbury, CT, United States ^c Duke University School of Medicine, United States

Use of PER977 to Reverse the Anticoagulant Effect of Edoxaban

TO THE EDITOR: New target-specific oral anticoag- was used to measure the anticoagulant effect of ulants are limited by the lack of a proven reversal edoxaban and its reversal by PER977. In clinical agent. PER977 (Perosphere) is a small, synthetic, trials of PER977, whole-blood clotting time water-soluble, cationic molecule that is designed showed low variability (interobserver variation, to bind specifically to unfractionated heparin 3.0%) and high reproducibility (intersubject variand low-molecular-weight heparin through non- ation, 3.6%), and correlated well with edoxaban covalent hydrogen bonding and charge-charge plasma concentrations (Fig. S3 in the Suppleinteractions (Fig. S1 in the Supplementary Ap- mentary Appendix).

CrossMark

When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH

Indications for use:

- Life-threatening bleeding: Intracranial hemorrhage, symptomatic or expanding extradural hemorrhage, or uncontrollable hemorrhage.
- Bleeding in a closed space or critical organ: Intra-spinal, intraocular, pericardial, pulmonary, retroperitoneal, or intramuscular with compartment syndrome.
- Persistent major bleeding despite local hemostatic measures, or risk of recurrent bleeding because of delayed DOAC clearance or DOAC overdose.
- Need for urgent intervention that is associated with a high risk of bleeding and that cannot be delayed to allow for drug clearance. Emergency surgery or intervention in patients at high risk for procedural bleeding: Neurosurgery (intracranial, extradural, or spinal), lumbar puncture, cardiac or vascular surgery (aortic dissection/aneurysm repair), hepatic or other major organ surgery

When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH

Potential indication for use

Need for urgent surgery or intervention in patients with acute renal failure

Antidotes should not be used

Elective surgery

Gastrointestinal bleeds that respond to supportive measures High drug levels or excessive anticoagulation without associated bleeding Need for surgery or intervention that can be delayed long enough to permit drug clearance

Summary – Doacs in real world

• Advances –

- Real world data reassuring
- Development of drug specific calibrated assays
- Development of specific antidotes
- Limitations
 - Lack of data in some disease groups
 - Anti-Xa antidotes not yet available
 - Doctors' familiarity in drug management

